• Title/Summary/Keyword: salt reduction

Search Result 556, Processing Time 0.028 seconds

Necessity of Waste Salt Regeneration in Pyroprocessing (I) - In View of Waste Reduction - (건식처리에서 염폐기물 재생공정 필요성 (I) - 폐기물 감량 측면 -)

  • 김정국;김인태;박근일;권상운;유재형;김준형
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.180-185
    • /
    • 2003
  • The reductions in final waste form and material costs, which were induced from an introduction of salt waste regeneration system, have been estimated and compared with those of the present pyrochemical process, which is under development in KAERI. The results calculated on the basis of published data and proper assumption showed that the final waste form of LiCl waste from the Advanced Conditioning Process would be reduced about 3.7 to#ton HM (from 5.4 to 1.7 ton/ton HM). For the case of LiCl-KCl eutectic salt waste from the electro-refining process, the final waste form would be reduced 2.3 ton/ton U. Thus, these estimation suggested that the introduction of salt waste regeneration system was essential to improve the economical efficiency of the pyrochemical process.

  • PDF

Thermal Release of LiCl Waste Salt from Pyroprocessing (파이로프로세싱 발생 LiCl염폐기물의 열발생)

  • Kim, Jeong-Guk;Kim, Kwang-Rag;Kim, In-Tae;Ahn, Do-Hee;Lee, Han-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.2
    • /
    • pp.73-78
    • /
    • 2009
  • The decay heat of Cs and Sr contained in a LiCl waste salt, generated from an electrolytic reduction process in pyroprocessing of spent nuclear fuel, has been calculated. The calculation has been carried out under some assumptions that most of the LiCl waste is purified and recycled to main process, and the residual is fabricated to make a waste form. As a result, the decay heat from daughter nuclides such as Ba and Y seems to be maximum 4.6 times higher than that from their parent nuclides such as Cs and Sr. The thermal release from Cs and Sr in the LiCl waste is the maximum around the first one month, so an cooling system operation for some time at the beginning would be suggested to control a rapid increase in the temperature of the LiCl waste salt.

  • PDF

Corrosion Behavior of Ni-Base Superalloys in a Hot Molten Salt (고온 용융염계에서 Ni-Base 초합금의 부식거동)

  • Cho, Soo-Haeng;Kang, Dae-Seong;Hong, Sun-Seok;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.577-584
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, Inconel MA 754, Nimonic 80A and Nimonic 90 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for 72~216 hrs. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3$, $NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3$ and $Li_2Ni_8O_{10}$ while $Cr_2O_3$, $LiFeO_2$, $(Cr,Ti)_2O_3$ and $Li_2Ni_8O_{10}$ were produced from Nimonic 80A. Also, corrosion products of Nimonic 90 were found to be $Cr_2O_3$, $(Cr,Ti)_2O_3$, $LiAlO_2$ and $CoCr_2O_4$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, Nimonic 80A, Nimonic 90 showed uniform corrosion behavior.

Changes of Nitrosamine-Related-Compounds by Salt Concentration and Nitrate Content during the Korean Native Soysauce Fermentation (재래(在來) 간장덧 숙성중(熟成中) 식염농도(食鹽濃度)와 Nitrate함량(含量)에 따른 Nitrosamine 관련물질(關聯物質)의 변화(變化))

  • Kim, Mi-Seong;Koh, Moo-Seok;Kwon, Tae-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.4
    • /
    • pp.329-338
    • /
    • 1985
  • This study was undertaken in order to research formation of nitrosamine and its related compounds by salt concentration and nitrate content during Korean native soysauce fermentation. The results from measuring the changes of nitrite and dimethylamine content can be summerized as follows. As the nitrate content in used water was getting higher and the salt concentration was getting lower, the soysauce fermentation was abnormal. As the salt concentration was getting higher, the reduction of nitrate and formation of nitrite were delayed. But whether the nitrate content in used water was higher or not, the nitrite was continuously remained. An addition of ascorbic acid restrained the reduction of nitrate, and simultaneously, it could eliminate the nitrite effectively. As the nitrate content in used water, was getting higher, the content of dimethylamine was getting lower. Nitrosodimethylamine was detected from 0 to 261.34 ppb.

  • PDF

Preference and perception of low-sodium burger

  • Choi, Seung-Gyun;Yim, Sun-Goo;Nam, Sang-Myung;Hong, Wan-Soo
    • Nutrition Research and Practice
    • /
    • v.16 no.1
    • /
    • pp.132-146
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Various sodium reduction policies have been implemented. However, there are limitations in the aspect of actual field applicability and efficiency. For effective sodium reduction, cooperation with the field is required and consumer preference must be considered. Thus, this study aimed to develop a low-sodium burger considering field applicability and consumer preference. MATERIALS/METHODS: Focus group interviews and in-depth interviews on the sodium reduction measures were conducted with nine professionals in related fields to discuss practical methods for sodium reduction from September 7 to 21, 2018. By reflecting the interview results, a burger using a low-sodium sauce was developed, and preference analysis for sodium in the burger sauces and finished products was performed. The consumer preference for low-sodium burgers was evaluated on 51 college students on November 12, 2018. RESULTS: The results of the professional interview showed that it is desirable to practice sodium reduction gradually, and by reflecting this, the burger sauce was prepared by adjusting the ratio of refined salt to 15%, 30%, and 50%. The sodium content of the burger using low-sodium sauce was 399 mg/100 g in the control group, 362 mg/100 g in the H1 group, and 351.5 mg/100 g in the H2 group, showing a 9.3-11.9% decrease in sodium in the H1 and H2 groups. The preference evaluation on the low-sodium burgers showed a higher preference for burgers with 9.3-11.9% sodium reduction, which did not affect the overall taste. CONCLUSIONS: This study examined the potential for sodium reduction in the franchise foodservice industry. An approximate 10% sodium reduction resulted in an increase in consumer preference without affecting the strength of the taste. Thus, if applied gradually, sodium reduction at practical levels could increase the consumer preference without changing the taste or quality and could be applied in the franchise foodservice industry.

Effect of Microstructure and Cold Reduction Ratio on Spheroidization Rate and Mechanical Properties of High Carbon Steel (고탄소강 열연판재의 미세조직과 냉간압하율에 따른 구상화 속도 및 기계적 특성)

  • Lee, K.D.;Lee, S.Y.;Ha, T.K.;Jeong, H.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.10a
    • /
    • pp.382-385
    • /
    • 2008
  • In the present study, the effect of cold reduction ratio on the spheroidization rate of SK85 high carbon steel sheet was investigated. High carbon steel sheet fabricated by POSCO was soaked at $850^{\circ}C$ for 2 hr in a box furnace and then treated at $570^{\circ}C$ and $670^{\circ}C$ for 10 min in a salt bath furnace followed by water quenching to obtain a fine pearlite structure and coarse pearlite structure. Cold rolling was conducted on the sheets by reduction ratios of 20, 30, and 40 % and heat treatment for spheroidization was carried out at $720^{\circ}C$ for the various time intervals from 1 to 32 hrs. Area fraction of spheroidized cementite was measured with an image analyzer as a function of cold reduction ratios and duration times.

  • PDF

Equilibria and Kinetics of Cr(VI) Reduction (심층 지하에서의 육가 크롬 환원)

  • 현재혁
    • The Journal of Engineering Geology
    • /
    • v.3 no.2
    • /
    • pp.191-201
    • /
    • 1993
  • Reduction is one of the important mechanisrns in decreasing the amount of Cr(VI) in wastewater and this reaction is quite dependent on pH and temperature. Either soil organic materials, or a high inorganic salt concentration with elevated temperature and low pH will provide a good condition for the reduction of Cr(VI) to Cr(III) in deep well injection zones. Chromate reduction by soil organic materials and chloride ion in various environment conditions is investigated. Aquifer and aquitard formation samples have been obtained from a deep well in St. Bernard Parish, and St. Charles Parish, LA, U.S.A., respectively. For this study, pH ranging from -0.81 to 2.0, temperature $50^{\circ}C{\;}and{\;}70^{\circ}C$, and cliloride concentration 0 M, 0.26 M and 0.52 M are used to represent the actual conditions in deep well injection zones.

  • PDF

Preparation of sulfonated reduced graphene oxide by radiation-induced chemical reduction of sulfonated graphene oxide

  • Jung, Chang-Hee;Hong, Ji-Hyun;Jung, Jin-Mook;Hwang, In-Tae;Jung, Chan-Hee;Choi, Jae-Hak
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.41-44
    • /
    • 2015
  • We report the preparation of sulfonated reduced graphene oxide (SRGO) by the sulfonation of graphene oxide followed by radiation-induced chemical reduction. Graphene oxide prepared by the well-known modified Hummer's method was sulfonated with the aryl diazonium salt of sulfanilic acid. Sulfonated graphene oxide (SGO) dispersed in ethanol was subsequently reduced by ${\gamma}$-ray irradiation at various absorbed doses to produce SRGO. The results of optical, chemical, and thermal analyses revealed that SRGO was successfully prepared by ${\gamma}$-ray irradiation-induced chemical reduction of the SGO suspension. Moreover, the electrical conductivity of SRGO was increased up to 2.94 S/cm with an increase of the absorbed dose.

ASSESSMENT OF ACTIVITY-BASED PYROPROCESS COSTS FOR AN ENGINEERING-SCALE FACILITY IN KOREA

  • KIM, SUNGKI;KO, WONIL;BANG, SUNGSIG
    • Nuclear Engineering and Technology
    • /
    • v.47 no.7
    • /
    • pp.849-858
    • /
    • 2015
  • This study set the pyroprocess facility at an engineering scale as a cost object, and presented the cost consumed during the unit processes of the pyroprocess. For the cost calculation, the activity based costing (ABC) method was used instead of the engineering cost estimation method, which calculates the cost based on the conceptual design of the pyroprocess facility. The calculation results demonstrate that the pyroprocess facility's unit process cost is $194/kgHM for pretreatment, $298/kgHM for electrochemical reduction, $226/kgHM for electrorefining, and $299/kgHM for electrowinning. An analysis demonstrated that the share of each unit process cost among the total pyroprocess cost is as follows: 19% for pretreatment, 29% for electrochemical reduction, 22% for electrorefining, and 30% for electrowinning. The total unit cost of the pyroprocess was calculated at $1,017/kgHM. In the end, electrochemical reduction and the electrowinning process took up most of the cost, and the individual costs for these two processes was found to be similar. This is because significant raw material cost is required for the electrochemical reduction process, which uses platinum as an anode electrode. In addition, significant raw material costs are required, such as for $Li_3PO_4$, which is used a lot during the salt purification process.