• Title/Summary/Keyword: salt reduction

Search Result 550, Processing Time 0.028 seconds

Changes in the Texture and Salt Content of Chinese Cabbage Using Different Salting Methods (절임 방법에 따른 배추 조직 및 염도 변화)

  • Lee, Myung-Ki;Yang, Hye-Jung;Woo, Ha-Na;Rhee, Young-Kyoung;Moon, Sung-Won
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.40 no.8
    • /
    • pp.1184-1188
    • /
    • 2011
  • This study analyzed changes in the texture and salt content of Chinese cabbage after salting using different methods to determine the effects of low salt brining. To verify the possibility of brining under low salt concentration, Chinese cabbage was salted with 1%, 2%, 6%, and 10% salt solutions by pressing, pressure reduction, or steaming. After salting, the firmness (g, determined using the puncture test) of the Chinese cabbage changed according to the brining methods used, however, an increasing trend in rigidity was observed as the salinity increased. Because the power applied during pressing or pressure reduction treatments is higher, the firmness of and penetration time on the surface of the brined Chinese cabbages after these treatments increased more in the 6% salt solution cabbage. Additionally, the Chinese cabbages treated with steam showed significantly higher firmness and penetration time than those treated by pressing and pressure reduction. As a result of pressing the 6% salt concentrated cabbage with 1.35 $kg{\cdot}f/cm^2$, a pressure reduction from 250 mmHg, and steaming at 100$^{\circ}C$ for 1 min, the cabbage had roughly 2% of the salt concentration, ultimately. These physical treatments of pressing, pressure reduction, and steaming could be used as new methods for preparing salted Chinese cabbage with low salt concentrations for general use.

Basis for a Minimalistic Salt Treatment Approach for Pyroprocessing Commercial Nuclear Fuel

  • Simpson, Michael F.;Bagri, Prashant
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • A simplified flowsheet for pyroprocessing commercial spent fuel is proposed in which the only salt treatment step is actinide drawdown from electrorefiner salt. Actinide drawdown can be performed using a simple galvanic reduction process utilizing the reducing potential of gadolinium metal. Recent results of equilibrium reduction potentials for Gd, Ce, Nd, and La are summarized. A description of a recent experiment to demonstrate galvanic reduction with gadolinium is reviewed. Based on these experimental results and material balances of the flowsheet, this new variant of the pyroprocessing scheme is expected to meet the objectives of minimizing cost, maximizing processing rate, minimizing proliferation risk, and optimizing the utilization of geologic repository space.

MOLTEN SALT VAPORIZATION DURING ELECTROLYTIC REDUCTION

  • Hur, Jin-Mok;Jeong, Sang-Moon;Lee, Han-Soo
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.73-78
    • /
    • 2010
  • The suppression of molten salt vaporization is one of the key technical issues in the electrolytic reduction process developed for recycling spent nuclear fuel from light-water reactors Since the Hertz-Langmuir relation previously applied to molten salt vaporization is valid only for vaporization into a vacuum, a diffusion model was derived to quantitatively assess the vaporization of LiCl, $Li_2O$ and Li from an electrolytic reducer operating under atmospheric pressure. Vaporization rates as a function of operation variables were calculated and shown to be in reasonable agreement with the experimental data obtained from thermogravimetry.

Salt Injury and Overcoming Strategy of Rice (수도의 염해와 대책)

  • 이승택
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.34 no.s02
    • /
    • pp.66-80
    • /
    • 1989
  • Salt injury in rice is caused mainly by the salinity in soil and in the irrigated water, and occasionaly by salinity delivered through typhoon from the sea. The salt concentration of rice plants increased with higher salinity in the soil of the rice growing. The climatic conditions, high temperature and solar radiation and dry conditions promote the salt absorption of rice plant in saline soil. The higher salt accumulation in the rice plant generally reduces the root activity and inhibits the absorption of minerals of rice plant, resulting the reduction of photosynthesis. The salt damages of rice plant, however, are different from different growth stage of rice plants as follows: 1. Germination of rice seed was slightly delayed up to 1.0% of salt concentration and remarkably at 1. 5%, but none of rice seeds were germinated at 2.5%. This may be due to the delayed water uptake of rice seeds and the inhibition of enzyme activity, 2. It was enable to establish rice seedlings at seed bed by 0.2% of salt concentration with some reduction of leaf elongation. The increasing of 0.3% salt concentration caused to the seedling death with varietal differences, but most of seedlings were death at 0.4% with no varietal differences. 3. Seedlings grown at the nursery over 0.1% salt, gradually reduced in rooting activity after transplanting according to increasing the salt concentration from 0.1% up to 0.3% of paddy field. However, the seedlings grown in normal seed bed showed no difference in rooting between varieties up to 0.1% but significantly different at 0.3% between varieties, but greatly reduced at 0.5% and died at last in paddy after transplanting. 4. At panicle initiation stage, rice plant delayed in heading by salt damage, at meiotic stage reduced in grains and its filling rate due to inhibition of glume and pollen developing, and salt damage at heading stage and till 3 weeks after heading caused to reduction of fertilization and ripening rate. In viewpoint of agricultural policy the overcoming strategy for salt injury is to secure sufficient water source. Irrigation and drainage systems as well as underground drainage is necessary to desalinize more effectively. This must be the most effective and positive way except cost. By cultural practice, growing the salt tolerant variety with high population could increase yield. The intermittent irrigation and fresh water flooding especially at transplanting and from panicle initiation to heading stage, the most sensitive to salt injury, is important to reduce the salt content in saline soil. During the off-cropping season, plough and rotavation with flooding followed by drainage, or submersion and drainage with groove could improve the desalinization. Increase of nitrogen fertilizer with more split application, and soil improvement by lime, organic matter and forign soil addition, could increase the rice yield. Shift of trans-planting is one of the way to escape from the salt injury.

  • PDF

Salt reduction in foods using protein hydrolysates (단백질 가수분해물을 이용한 식품 내 소금 저감화)

  • Shin, Jung-Kue
    • Food Science and Industry
    • /
    • v.51 no.4
    • /
    • pp.313-324
    • /
    • 2018
  • As excessive intake of salt is regarded as a reason for health problems, the tendency of people to attempt to reduce intake of salt in their everyday lives is on the rise. In Korea, where many people have a higher intake of salt compared to those in other countries, there have been diverse efforts to improve on this eating habit. Protein hydrolysates are chemically, physically hydrolyzed protein that have been widely utilized as a material for not only regular food but health functional food due to have diverse biological effects such as anti-oxidation, anti-inflammation, prevention of diabetes, and regulation of blood pressure. Various amino acids such as glutamic acid, arginine and arginine dipeptides, which exist in the components of protein hydrolysates, have also been recently recognized as being helpful in decreasing the use of salt in foods as they can greatly enhance salty taste when used concurrently with salt due to having both salty and palatable flavors. In the case of protein hydrolysates that decompose soy protein or fish protein such as anchovy, they could reduce consumption of salt by as much as 50% without affecting people's food preferences when applied to food as they boost salty taste by approximately 10% to 70%. Although there are only a few studies on protein hydrolysates as a salty taste enhancer or salt substitute, the results of several studies are indicative of the potential of protein hydrolysates as a salty taste enhancing ingredient.

Reduction of Salt Concentration in Food Waste by Salt Reduction Process with a Rotary Reactor (로터리식 저염화 공정설비에 의한 음식물 쓰레기의 염분농도 저감)

  • Kim, Wi-sung;Seo, Young-Hwa
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.61-70
    • /
    • 2005
  • In order to reduce salt(as NaCl) contents in food waste and to improve the quality of discharged wastewater produced during the recycling process of food waste for the purpose of compost and feed stuff, a salt reduction process by added water into food waste was developed. The pilot plant with a rotary type salt reduction equipment to manage continuously 0.5 ton food waste per hour was constructed and the efficiency was tested. The amount of added water was calculated by the water content and the efficiency of dewatering process of food waste. Approximately 0.8 liter water per a kilogram of food waste was injected into the reactor in which food waste was pouring simultaneously, then diluted/mixed in a rotary reactor. About 1.1 liter of leachate including added water was generated, but the leachate contained a very high content of organic particles, so most particles were recovered by two step solid-liquid separation process. The first step was a gravitational filtering process using screens with a pore diameter of 1mm, and the second separation process was centrifugal process. Organic quality of food waste which had been desalted was maintained by inputting the entirely recovered organic particles. The efficiency of salt reduction of food waste was estimated by measuring a chloride anion by titration and salinity by a probe. The results by the two different measuring methods were always over 50%, and the quality of final wastewater was improved up to $200mg/{\ell}$ as TS(total solid) by an additional settling process after the two step solid-liquid separation process.

  • PDF

Development of strategies to manufacture low-salt meat products - a review

  • Aprilia, Gracia Henreita Suci;Kim, Hyeong Sang
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.218-234
    • /
    • 2022
  • Urbanization is usually followed by changes in eating habits, with a specific trend toward the consumption of ready-to-eat products, such as processed foods. Among the latter, meat products are known contributors to high dietary sodium owing to salt addition. Salt plays an essential role in maintaining the quality of meat products in terms of acceptability and safety. However, an excessive salt intake is linked to high blood pressure and cardiovascular diseases. Hence, several studies have been competing for the discovery of salt alternatives performing in a similar way as common salt. A number of replacements have been proposed to reduce salt consumption in meat products while taking into account consumer preferences. Unfortunately, these have resulted in poorer product quality, followed by new adverse effects on health. This review addresses these recent issues by illustrating some established approaches and providing insight into further challenges in developing low-salt meat products.

Studies on Functional Salt Fortified with Seaweed Components (해조성분 강화 기능성소금에 대한 연구)

  • Byun, Jee-Young;Namgung, Bae;Jo, Jin-Ho;Do, Jung-Ryong;In, Jae-Pyung;Kim, Young-Myoung
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.2
    • /
    • pp.152-157
    • /
    • 2007
  • In an attempt to develop functional salts having beneficial health effects, we experimentally prepared three functional salts by fortification with soluble seaweed minerals (Hizikia mineral salt, HMS), fucoidan (fucoidan salt, FS) and laver extracts (laver salt, LS). To characterize the functional salts, their physicochemical properties and in vitro functionalities, such as pH, color, mineral composition, solubility, oxidation-reduction potential, sensory properties, angiotesin converting enzyme (ACE) inhibitory activity, and bile acid binding capacity were investigated. The functional salts revealed slightly lower NaCl concentrations, but showed a variety of pH values compared with conventional table salt. The pH values of HMS, FS, and LS were 11.3, 6.8, and 6.5, respectively. The oxidation-reduction potentials (ORP) of the functional salts varied from -229 mV to 38 mV, significantly lower than refined salt. The functional salts were significantly darker in color than refined salt, and the mineral composition of HMS was considerably enriched compared to refined salt, particularly in potassium ion. As a result of the sensory evaluation, FS and LS were comparatively palatable in saltiness, pungency, bitterness, and overall acceptance compared with refined salt. It was also found that one functional salt had ACE inhibitory activity (54.8% in LS) and another had bile acid binding capacity (80.7% in FS).

Evaluation of the Effectiveness of a Salt Reduction Program for Employees (직장인 대상 저염화 교육 프로그램의 효과 평가)

  • Kim, Hyun-Hee;Shin, Eun-Kyung;Lee, Hye-Jin;Lee, Nan-Hee;Chun, Byung-Yeol;Ahn, Moon-Young;Lee, Yeon-Kyung
    • Journal of Nutrition and Health
    • /
    • v.42 no.4
    • /
    • pp.350-357
    • /
    • 2009
  • The purpose of this paper was to evaluate the effectiveness of a salt reduction education program. Subjects participating in this study were 251 employees (166 in the "educated" group, 85 in the "non-educated" group) at 8 hospital and industry food service operations in Daegu. After the salt reduction education program was carried out, a salty taste assessment of both groups was conducted. The educated group had statistically significant differences and the noneducated group did not have statistically significant differences. In terms of nutrition knowledge, while the nutrition knowledge of the educated group was increased (p < 0.001), that of the non-educated group rose at a rate of 0.92. In terms of dietary attitude, the educated group exhibited increased preference toward less salty foods when compared to the noneducated group (p < 0.001). Regarding dietary behavior, the score of the educated group was improved (p < 0.001), thereby indicating a preference for less salty taste. This means that nutrition education had influence on dietary behavior. However, after education, sodium excretion for the educated group was not significantly decreased, compared to before education. The results show that there was a positive correlation between salty taste assessment and dietary attitude and behavior for a high-salt diet. There was a positive relationship between attitude for a high-salt diet and sodium intake; when people prefere a more salty taste, they eat more sodium. Therefore, in order to change dietary preference away from salty taste and to decrease sodium intake, a nationwide, systematic and continuous salt reduction education program is needed.

Analysis of AM and AEM Oxides Behavior in a SF Electrolytic Reduction Process (사용후핵연료 전기환원 공정에서의 알카리, 알카리토 금속 산화물들의 거동 분석)

  • 박병흥;강대승;서중석;박성원
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.268-277
    • /
    • 2004
  • process (ACP), electrochemical properties of high heat-generating alkali and alkali earth oxides in molten salt were measured and the behavior of those elements were analyzed. The reduction potentials of Cs, Sr, and Ba in a molten LiCl-$Li_2O$ system were more cathodic than that of Li and closely located one another. Thus, it is expected that the alkali and alkali earth would not hinder the reaction mechanism which is via lithium reduction. Alkali and alkali earth metals are likely to recycle into molten salt when the process is operated beyond metal reduction potentials and the effect of electric current on the mass transport is also determined by measuring the metal concentrations in the molten salt phase at different current conditions.

  • PDF