DOI QR코드

DOI QR Code

Basis for a Minimalistic Salt Treatment Approach for Pyroprocessing Commercial Nuclear Fuel

  • Simpson, Michael F. (University of Utah, Department of Metallurgical Engineering) ;
  • Bagri, Prashant (University of Utah, Department of Metallurgical Engineering)
  • Received : 2017.06.05
  • Accepted : 2018.02.20
  • Published : 2018.03.30

Abstract

A simplified flowsheet for pyroprocessing commercial spent fuel is proposed in which the only salt treatment step is actinide drawdown from electrorefiner salt. Actinide drawdown can be performed using a simple galvanic reduction process utilizing the reducing potential of gadolinium metal. Recent results of equilibrium reduction potentials for Gd, Ce, Nd, and La are summarized. A description of a recent experiment to demonstrate galvanic reduction with gadolinium is reviewed. Based on these experimental results and material balances of the flowsheet, this new variant of the pyroprocessing scheme is expected to meet the objectives of minimizing cost, maximizing processing rate, minimizing proliferation risk, and optimizing the utilization of geologic repository space.

Keywords

References

  1. H.S. Lee, G.I. Park, K.H. Kang, J.M. Hur, J.G. Kim, D.H. Ahn, Y.Z. Cho, and E.H. Kim, "Pyroprocessing technology development at KAERI", Nuclear Engineering and Technology, 43(4). 317-328 (2011). https://doi.org/10.5516/NET.2011.43.4.317
  2. M.F. Simpson and J.D. Law, "Nuclear Fuel Reprocessing", Encyclopedia of Sustainable Science and Technology, 2nd Edition, Springer, ed. R.A. Meyers, ISBN 978-1-4939-2493-6, in press.
  3. C.E. Till and Y. I. Chang. Plentiful Energy. ISBN: 978-1466384606 (2011).
  4. H.S. Park, "The status of the radioactive waste management in Korea", Technologies for the Management of Radioactive Waste from Nuclear Power Plants and Back End Nuclear Fuel Cycle Activities (2001): 62.
  5. E.J. Karell, K.V. Gourishankar, J.L. Smith, L.S. Chow, and L. Redey, "Separation of actinides from LWR spent fuel using molten-salt-based electrochemical processes", Nuclear Technology, 136(3). 342-353 (2001). https://doi.org/10.13182/NT136-342
  6. S. Herrmann, S. Li, and M. Simpson, "Electrolytic Reduction of Spent Light Water Reactor Fuel", Journal of Nuclear Science and Technology, 44(3). 361-367 (2007). https://doi.org/10.1080/18811248.2007.9711295
  7. J.P. Ackerman, "Chemical Basis for Pyrochemical Reprocessing of Nuclear Fuel", Ind. Eng. Chem. Res., 30, 141-145 (1991). https://doi.org/10.1021/ie00049a022
  8. P. Bagri and M.F. Simpson, "Determination of activity coefficient of lanthanum chloride in molten LiCl-KCl eutectic salt as a function of cesium chloride and lanthanum chloride concentrations using electromotive force measurements", Journal of Nuclear Materials, 482, 248-256 (2016). https://doi.org/10.1016/j.jnucmat.2016.10.006
  9. I. Barin, Thermochemical Data of Pure Substances, Third Edition. VCH (1995).
  10. T. Inoue and L. Koch, "Development of Pyroprocessing and Its Future Direction", Nuclear Engineering and Technology, 40(3). April (2008).
  11. H.E. Garcia, M. J. Lineberry, S. E. Aumeier, and H. F. McFarlane. "Proliferation resistance of advanced sustainable nuclear fuel cycles", Nuclear Plant Journal, 20(1). 18-27 (2002).
  12. M.F. Simpson, "Projected Salt Waste Production from a Commercial Pyroprocessing Facility", Science and Technology of Nuclear Installations (2013).
  13. R.A. Wigeland, T.H. Bauer, T.H. Fanning, and E.E. Morris, "Spent Nuclear Fuel Separations and Transmutation Criteria for Benefit to a Geologic Repository", Proceedings of the Waste Management 2004 Conference, February 29-March 4, 2004, Tucson, AZ.
  14. L. S. Chow, J. K. Basco, J. P. Ackerman, and T. R. Johnson, "Molten Salt/Metal Extractions for Recovery of Transuranic Elements", ANL-CP-75688, ANL Symposium on Energy, Environment, and Information Management (1992).
  15. M. Kurata, Y. Sakamura, T. Hijikata, and K. Kinoshita, "Distribution behavior of uranium, neptunium, rareearth elements (Y, La, Ce, Nd, Sm, Eu, Gd) and alkaline-earth metals (Sr, Ba) between molten LiCl-KCl eutectic salt and liquid cadmium or bismuth", Journal of Nuclear Materials, 227, 110 (1995). https://doi.org/10.1016/0022-3115(95)00146-8
  16. K. Kinoshita, T. Inoue, S.P. Fusselman, D.L. Grimmett, J.J. Roy, R.L. Gay, C.L. Krueger, C.R. Nabelek, and T.S. Storvick, "Separation of Uranium and Transuranic Elements from Rare Earth Elements by Means of Multistage Extraction in LiCl-KCl/Be System", Journal of Nuclear Science and Technology, 36, 2 (1999).
  17. T. Kobayashi, "An Assessment of the Multi-Stage Counter Current Extraction of TRUs from Spent Molten Salt into Liquid Metal", Journal of Nuclear Science and Technology, 43, 7 (2006).
  18. J-H. Yoo, H-S. Lee, and E-H. Kim, "Prediction of a Mutual Separation of Actinide and Rare Earth Groups in a Multistage Reduction Extraction System", Nuclear Engineering and Technology, 39, 5 (2007).
  19. M.A. Williamson and J. L. Willit, "Pyroprocessing flowsheets for recycling used nuclear fuel", Nuclear Engineering and Technology, 43(4). 329-334(2011). https://doi.org/10.5516/NET.2011.43.4.329
  20. M.F. Simpson, T.S. Yoo, D. LaBrier, M. Lineberry, M. Shaltry, and S. Phongikaroon; "Selective Reduction of Active Metal Chlorides from Molten LiCl-KCl using Lithium Drawdown", Nuclear Engineering and Technology, 44(7), 767-772 (2012). https://doi.org/10.5516/NET.06.2011.010
  21. D.Y. Kim, I.S. Hwang, and J.H. Lee. "Controlling the leakage of liquid bismuth cathode elements in ceramic crucibles used for the electrowinning process in pyroprocessing", Journal of Nuclear Materials 478, 91-96 (2016). https://doi.org/10.1016/j.jnucmat.2016.06.004
  22. P. Bagri and M.F. Simpson, "Galvanic reduction of uranium(III) chloride from LiCl-KCl eutectic salt using gadolinium metal", Journal of Nuclear Materials, 493, 120-123 (2017). https://doi.org/10.1016/j.jnucmat.2017.06.007
  23. P. Bagri and M.F. Simpson, "Potentiometric Measurement of Activity of Rare Earth Chlorides (La, Gd, Ce, Nd) in LiCl-KCl Eutectic Salt.", Electrochimica Acta, 259, 1120-1128 (2018). https://doi.org/10.1016/j.electacta.2017.10.082
  24. P. Bagri and M.F. Simpson, "Activity Measurements of Gadolinium (III) Chloride in Molten LiCl-KCl Eutectic Salt Using Saturated $Gd/GdCl_3$ Reference Electrode", Journal of The Electrochemical Society, 164(8), H5299-H5307 (2017). https://doi.org/10.1149/2.0441708jes
  25. P. Bagri, J. Ong, C. Zhang, and M.F. Simpson, "Optimization of $UCl_3\;and\;MgCl_2$ separation from molten LiCl-KCl eutectic salt via galvanic drawdown with sacrificial Gd anode", Journal of Nuclear Materials (in submission).
  26. J. Zhang, "Electrochemistry of actinides and fission products in molten salts-Data review", Journal of Nuclear Materials, 447, 271-284 (2014). https://doi.org/10.1016/j.jnucmat.2013.12.017
  27. Outotec, HSC Chemistry, version 9, 2016.
  28. H. Cynthia, S. Phongikaroon, and J. R. Scott. "Temperature effect on laser-induced breakdown spectroscopy spectra of molten and solid salts", Spectrochimica Acta Part B: Atomic Spectroscopy, 97, 79-85 (2014). https://doi.org/10.1016/j.sab.2014.04.012
  29. S.H. Park et. al., "Status of Development of Pyroprocessing Safeguards at KAERI", Journal of Nuclear Fuel Cycle and Waste Technology, 15(3). 191-197 (2017). https://doi.org/10.7733/jnfcwt.2017.15.3.191
  30. M. Wasnik, K. Carlson, and M.F. Simpson, "Waste Minimization of Electrorefiner Waste Salt via Dechlorination: A New Approach", Proceedings of the Annual Meeting of the American Nuclear Society, June 2017.

Cited by

  1. Options Study for the Neutralization of Elemental Sodium During the Pyroprocessing of Used Nuclear Fuel vol.18, pp.2, 2020, https://doi.org/10.7733/jnfcwt.2020.18.2.113