• Title/Summary/Keyword: salt reduction

Search Result 550, Processing Time 0.025 seconds

Current Status of Magnesium Smelting and the Related Recycling Topics (마그네슘 제련(製鍊) 기술현황(技術現況)과 리싸이클링 관련(關聯) 대상분야(對象分野))

  • Park, Hyung-Kyu
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.3-11
    • /
    • 2007
  • It is to review the current status of magnesium smelting. Raw materials for magnesium source, worldwide production and producers of metallic magnesium, Korean magnesium markets and some important extraction technologies were reviewed. The magnesium extraction technologies were described according to the two major reduction methods: the fused salt electrolysis and the thermal reduction method. Also, the research on the extraction of magnesium from magnesite which has been being carried out at KIGAM was briefly introduced with discussing the related topics on the recycling of the chlorine and the hydrogen chloride gas used in the process.

Recovery of Ammonium Salt from Nitrate-Containing Water by Iron Nanoparticles and Membrane Contactor

  • Hwang, Yu-Hoon;Kim, Do-Gun;Ahn, Yong-Tae;Moon, Chung-Man;Shin, Hang-Sik
    • Environmental Engineering Research
    • /
    • v.17 no.2
    • /
    • pp.111-116
    • /
    • 2012
  • This study investigates the complete removal of nitrate and the recovery of valuable ammonium salt by the combination of nanoscale zero-valent iron (NZVI) and a membrane contactor system. The NZVI used for the experiments was prepared by chemical reduction without a stabilizing agent. The main end-product of nitrate reduction by NZVI was ammonia, and the solution pH was stably maintained around 10.5. Effective removal of ammonia was possible with the polytetrafluoroethylene membrane contactor system in all tested conditions. Among the various operation parameters including influent pH, concentration, temperature, and contact time, contact time and solution pH showed significant effects on the ammonia removal mechanism. Also, the osmotic distillation phenomena that deteriorate the mass transfer efficiency could be minimized by pre-heating the influent wastewater. The ammonia removal rate could be maximized by optimizing operation conditions and changing the membrane configuration. The combination of NZVI and the membrane contactor system could be a solution for nitrate removal and the recovery of valuable products.

Chemical Stability of Conductive Ceramic Anodes in LiCl-Li2O Molten Salt for Electrolytic Reduction in Pyroprocessing

  • Kim, Sung-Wook;Kang, Hyun Woo;Jeon, Min Ku;Lee, Sang-Kwon;Choi, Eun-Young;Park, Wooshin;Hong, Sun-Seok;Oh, Seung-Chul;Hur, Jin-Mok
    • Nuclear Engineering and Technology
    • /
    • v.48 no.4
    • /
    • pp.997-1001
    • /
    • 2016
  • Conductive ceramics are being developed to replace current Pt anodes in the electrolytic reduction of spent oxide fuels in pyroprocessing. While several conductive ceramics have shown promising electrochemical properties in small-scale experiments, their long-term stabilities have not yet been investigated. In this study, the chemical stability of conductive $La_{0.33}Sr_{0.67}MnO_3$ in $LiCl-Li_2O$ molten salt at $650^{\circ}C$ was investigated to examine its feasibility as an anode material. Dissolution of Sr at the anode surface led to structural collapse, thereby indicating that the lifetime of the $La_{0.33}Sr_{0.67}MnO_3$ anode is limited. The dissolution rate of Sr is likely to be influenced by the local environment around Sr in the perovskite framework.

Preparation of Highly Efficient Nd-Fe-B Magnetic Powders by Reduction/Diffusion Process (환원/확산 공정에 의한 고성능 Nd-Fe-B 자성분말의 제조)

  • Kim, Dongsoo;Chen, Chunqiang;Baek, Younkyoung;Choi, Chuljin
    • Journal of Powder Materials
    • /
    • v.20 no.3
    • /
    • pp.197-202
    • /
    • 2013
  • A novel route to prepare Nd-Fe-B magnetic particles by utilizing both spray drying and reduction/diffusion processes was investigated in this study. Precursors were prepared by spray drying method using the aqueous solutions containing Nd salt, Fe salt and boric acid with stoichiometric ratios. Precursor particles could be obtained with various sizes from 2 to $10{\mu}m$ by controlling concentrations of the solutions and the average size of $2{\mu}m$ of precursors were selected for further steps. After heat treatment of precursors in air, Nd and Fe oxides were formed through desalting procedure, followed by reduction processes in Hydrogen ($H_2$) atmosphere and with Calcium (Ca) granules in Argon (Ar) successively. Moreover, diffusion between Nd and Fe occurred during Ca reduction and $Nd_2Fe_{14}B$ particles were formed. With Ca amount added to particles after $H_2$ reduction, intrinsic coercivity was changed from 1 to 10 kOe. In order to remove and leach CaO and residual Ca, de-ionized water and dilute acid were used. Acidic solutions were more effective to eliminate impurities, but Fe and Nd were dissolved out from the particles. Finally, $Nd_2Fe_{14}B$ magnetic particles were synthesized after washing in de-ionized water with a mean size of $2{\mu}m$ and their maximum energy product showed 9.23 MGOe.

Effects of Soil Amendments and Planting Miscanthus sinensis on Salt Reduction and Growth Improvement in Substrate irrigated with High Concentration of Calcium Chloride Deicing Salts (염화칼슘 제설제 고농도 처리에 따른 토양개량제와 참억새 식재 처리가 염류저감 및 생육개선에 미치는 영향)

  • Ju, Jin-Hee;Yang, Ji;Park, Sun-Young;Yoon, Young-Han
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.6
    • /
    • pp.15-25
    • /
    • 2019
  • Contamination of soil by deicing salt is among the important environment problems due to their toxicity and negative impact to human health and the environment. One of the effective methods for cleaning the soil from deicing salts is desalination using soil amendment-phytoremediation continuum treatment. The purpose of this study was to determine how much of the pH, EC control and Ca2+, Na+, Mg2+, and K+ taken up soil amendments and Miscanthus sinensis, and to evaluate the effect of salt reduction and growth improvement as affected by soil amendment in high concentration of calcium chloride (CaCl2) deicing salts. Results indicated that the addition of soil amendments was decrease the EC and pH, also significantly reduce the leaching of Ca2+, Na+, Mg2+, K+, a chloride ions related deicing salts, compared to the control for CaCl2 10 g/L treatment. It also resulted in an enhanced plant growth and higher plant height, leaf length, leaf width, number of leaves, fresh weight and dry weight in Hydroball treatment + Miscanthus sinensis planting continuum treatment compared to the treatment that planted Miscanthus sinensis only. Therefore, we concluded that soil amendments might be attributed to an accumulation of deicing slats in the roadside soil, resulting in the improvement of Miscanthus sinensis growth.

Studies on the Fouling Reduction through Oxyfluorination of Porous Polyethylene Membranes (함산소불소화법을 통한 다공성 폴리에틸렌막의 파울링현상 감소연구)

  • Kang, Su Yeon;Rhim, Ji Won;Cheong, Seong Ihl
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.431-437
    • /
    • 2014
  • To overcome the flux reduction due to the fouling by adsorption of foulants onto the porous hydrophobic polyethylene membrane surface, the oxyflorination was introduced to hydrophilize the hydrophobic membranes. After the hydrophilization through oxyfluorination, the contact angle decreased from $93^{\circ}$ to $50^{\circ}$ while the water flux increased to 60%. It was considered that for the model foulants dissolved in water, such as albumin (form bovine serum, BSA), humic acid sodium salt (HA), and alginic acid sodium salt (SA), the flux was enhanced since the adsorbed foulants decreased by the oxyfluorination. Particularly, it was obtained that the water flux was over twice more than the untreated polyethylene membrane in case of SA foulant.

Electrochemical Behavior of Li-B Alloy Anode - Liquid Cadmium Cathode (LCC) System for Electrodeposition of Nd in LiCl-KCl

  • Kim, Gha-Young;Shin, Jiseon;Kim, Tack-Jin;Shin, Jung-Sik;Paek, Seungwoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.3
    • /
    • pp.102-106
    • /
    • 2015
  • The performance of Li-B alloy as anode for molten salt electrolysis was firstly investigated. The crystalline phase of the prepared Li-B alloy was identified as $Li_7B_6$. The potential profile of Li-B alloy anode was monitored during the electrodeposition of $Nd^{3+}$ onto an LCC (liquid cadmium cathode) in molten LiCl-KCl salt at $500^{\circ}C$. The potential of Li-B alloy was increased from -2.0 V to -1.4 V vs. Ag/AgCl by increasing the applied current from 10 to $50mA{\cdot}cm^{-2}$. It was found that not only the anodic dissolution of Li to $Li^+$ but also the dissolution of the atomic lithium ($Li^0$) into the LiCl-KCl eutectic salt was observed, following the concomitant reduction of $Nd^{3+}$ by the $Li^0$ in Li-B alloy. It was expected that the direct reduction could be restrained by maintaining the anode potential higher that the deposition potential of neodymium.

Recent strategies for improving the quality of meat products

  • Seonmin Lee;Kyung Jo;Seul-Ki-Chan Jeong;Hayeon Jeon;Yun-Sang Choi;Samooel Jung
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.895-911
    • /
    • 2023
  • Processed meat products play a vital role in our daily dietary intake due to their rich protein content and the inherent convenience they offer. However, they often contain synthetic additives and ingredients that may pose health risks when taken excessively. This review explores strategies to improve meat product quality, focusing on three key approaches: substituting synthetic additives, reducing the ingredients potentially harmful when overconsumed like salt and animal fat, and boosting nutritional value. To replace synthetic additives, natural sources like celery and beet powders, as well as atmospheric cold plasma treatment, have been considered. However, for phosphates, the use of organic alternatives is limited due to the low phosphate content in natural substances. Thus, dietary fiber has been used to replicate phosphate functions by enhancing water retention and emulsion stability in meat products. Reducing the excessive salt and animal fat has garnered attention. Plant polysaccharides interact with water, fat, and proteins, improving gel formation and water retention, and enabling the development of low-salt and low-fat products. Replacing saturated fats with vegetable oils is also an option, but it requires techniques like Pickering emulsion or encapsulation to maintain product quality. These strategies aim to reduce or replace synthetic additives and ingredients that can potentially harm health. Dietary fiber offers numerous health benefits, including gut health improvement, calorie reduction, and blood glucose and lipid level regulation. Natural plant extracts not only enhance oxidative stability but also reduce potential carcinogens as antioxidants. Controlling protein and lipid bioavailability is also considered, especially for specific consumer groups like infants, the elderly, and individuals engaged in physical training with dietary management. Future research should explore the full potential of dietary fiber, encompassing synthetic additive substitution, salt and animal fat reduction, and nutritional enhancement. Additionally, optimal sources and dosages of polysaccharides should be determined, considering their distinct properties in interactions with water, proteins, and fats. This holistic approach holds promise for improving meat product quality with minimal processing.

Heat Balance during the Electrowinning of Neodymium Metal in Molten Salt (네오디뮴 금속의 전해 채취 중의 열수지)

  • Cho, Sung-Wook;Yu, Jeong-Hyun;Choi, Ho-Gil
    • Resources Recycling
    • /
    • v.31 no.3
    • /
    • pp.81-87
    • /
    • 2022
  • Energy consumption per unit weight of metal (kwh/kg of metal) is one of the most important economic indicators in the process of molten salt electrolysis. It is related to the heat loss of salt bath and the current efficiency of the process. The current efficiency is highly dependent on electrolysis temperature. On the other hand, the temperature of salt bath may increase significantly due to the difference (larger energy input than consumption) in heat balance at the beginning of electrolysis, which may cause different electrolysis temperature from an initially targeted value. This results in a bad effect on current efficiency. Therefore, it will be helpful to the reduction of energy consumption to compare the calculated and measured values of the temperature change of salt bath through the heat balance review at the early stage of electrolysis and to evaluate the energy loss to outside. In this study, based on the authors' experimental data, the heat balance was reviewed at the beginning of the electrolysis, and it was possible to evaluate the energy loss to the outside and the increase of the temperature of the salt bath quantitatively. Through such a method, heat loss reduction plan can be derived and current efficiency can be improved so that energy consumption can be reduced.

Loss of Li2O Caused by ZrO2 During the Electrochemical Reduction of ZrO2 in Li2O-LiCl Molten Salt (Li2O-LiCl 용융염을 이용한 ZrO2의 전기화학적 환원과정에서 발생하는 Li2O의 손실)

  • Park, Wooshin;Hur, Jin-Mok;Choi, Eun-Young;Kim, Jong-Kook
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.4
    • /
    • pp.229-236
    • /
    • 2012
  • A molten salt technology using $Li_2O$-LiCl has been extensively investigated to recover uranium metal from spent fuels in the field of nuclear energy. In the reduction process, it is an important point to maintain the concentration of $Li_2O$. $ZrO_2$ is inevitably contained in the spent fuels because Zr is one of the main components of fuel rod hulls. Therefore, the fate of $ZrO_2$ in $Li_2O$-LiCl molten salt has been investigated. It was found that $Li_2ZrO_3$ and $Li_4ZrO_4$ were formed chemically and electrochemically and they were not reduced to Zr. The recycling of $Li_2O$ is the key mechanism ruling the total reaction in the electrolytic reduction process. However, $ZrO_2$ will have a role as a $Li_2O$ sink.