References
- E. J. Karell, K. V. Gourishankar, J. L. Smith, L. S. Chow, L. Redev, "Separation of Actinides from LWR Spent Fuel Using Molten-Salt-Based Electrochemical Process", Nucl. Technol., 136(3), pp. 342-353 (2001).
- J. M. Hur, C. S. Seo, S. S. Hong, D. S. Kang, S. W. Park, "Metallization of U3O8 via Catalytic Electrochemical Reduction with Li2O in LiCl Molten Salt", React. Kinet. Catal. Lett., 80(2), pp. 217-222 (2003). https://doi.org/10.1023/B:REAC.0000006128.15961.1d
- S. M. Jeong, H. S. Shin, S. H. Cho, J. M. Hur, H. S. Lee, "Electrochemical Behavior of a Platinum Anode for Reduction of Uranium Oxide in a LiCl Molten Salt", Electrochim. Acta, 54, pp. 6335-6340 (2009). https://doi.org/10.1016/j.electacta.2009.05.080
- S. D. Herrmann, S. X. Li, "Separation and Recovery of Uranium Metal from Spent Light Water Reactor Fuel via Electrolytiv Reduction and Electrorefining", Nucl. Technol., 171(3), pp. 247-265 (2010).
- S. M. Jeong, B. H. Park, J. M. Hur, C. S. Seo, H. S. Lee, K. C. Song, "An Experimental Study on an Electrochemical Reduction of an Oxide Mixture in the Advanced Spent-Fuel Conditioning Process", Nucl. Eng. Technol. 42(2), pp. 183-192 (2010). https://doi.org/10.5516/NET.2010.42.2.183
-
Y. Sakamura, M. Kurata, T. Inoue, "Electrochemical Reduction of
$UO_{2}$ in Molten$CaCl_{2}$ or LiCl", J. Electrochem. Soc., 153(3), pp. D31-39 (2006). https://doi.org/10.1149/1.2160430 -
J. M. Hur, S. M. Jeong, H. S. Lee, "Underpotential Deposition of Li In a Molten LiCl-
$Li_{2}O$ Electrolyte for the Electrochemical Reduction of U from Uranium Oxides", Electrochem. Comm., 12, pp. 706- 709 (2010). https://doi.org/10.1016/j.elecom.2010.03.012 - B. H. Park, J. M. Hur, "Behavior of Diffusing Elecmets from an Integrated Cathode of an Electrochemical Reduction Process", Korean J. Chem. Eng., 27(4), pp. 1278-1283 (2010). https://doi.org/10.1007/s11814-010-0191-x
- B. H. Park, J. M. Hur, H. S. Lee, "A Chemical Reaction Calculation and a Semi-Emperical Model for the Dynamic Simulation of an Eletrolytic Reduction of Spent Oxide Fuels", J. Kor. Rad. Waste Soc., 8(1), pp. 19-32 (2010).
- G. K. Moiseev, N. A. Vatolin, "Interaction of Lithium Zirconate with Lithium under Equilibrium Conditions", Phys. Chem., 388(4), pp. 505-509 (2003).
- E. Y. Choi, J. M. Hur, I. K. Choi, S. G. Kwon, D. S. Kang, S. S. Hong, H. S. Shin, M. A. Yoo, S. M. Jeong, "Electrochemical reduction of porous 17 kg uranium oxide pellets by selection of an optimal cathode/anode surface area ratio", J. Nucl. Mater., 418, pp. 87-92 (2011). https://doi.org/10.1016/j.jnucmat.2011.08.001
- A. M. Abdelkader, A. Daher, R. A. Abdelkareem, E. El-Kashif, "Preperation of Zirconium Metal by the Electrochemical Reduction of Zirconium Oxide", Metall. Mater. Trans. B., 38B, pp. 35-44 (2007).
- K. S. Mohandas, D. J. Fray, "Electrochemical Deoxidation of Solid Zirconium Dioxide in Molten Calcium Chloride", Metall. Mater. Trans. B., 40B, pp. 685-699 (2009).
Cited by
- Salt System vol.165, pp.2, 2018, https://doi.org/10.1149/2.0281802jes
- Reduction of ZrO2 during SNF Pyrochemical Reprocessing vol.168, pp.3, 2012, https://doi.org/10.1149/1945-7111/abe8be