• 제목/요약/키워드: salt in seawater

검색결과 167건 처리시간 0.032초

해양환경에 폭로한 콘크리트의 내염특성에 대한 실험적 연구 (I) (An Experimental Study on the Salt Resistance Properties with Concrete Materials under Marine Exposure Environment (I))

  • 신도철;김영웅;김용철;김동철
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.51-56
    • /
    • 2002
  • Protection against salt attack in seawater is obtained by using a dense, quality concrete with a low water-cement ratio, and a components appropriate for producing concrete having the needed salt resistance. The objective of this study is to evaluate the feature of corrosion with using the various concrete materials under marine exposure environment. According to the test results, slag powder and anti -corrosion inhibitor showed high chloride resistance effect. Also concre crack have an influence on corrosion of steel in spite of mixed design for salt resistance concrete. The requirement for low permeability is essential not only to delay the effect of salt attack, but also to afford adquate protection to reinforcement with admixtures.

  • PDF

역삼투막을 이용한 해수담수화 플랜트에서 전처리 공정 기술 (An Overview of the Pretreatment Processes in Seawater Desalination Plants using Reverse Osmosis Membranes)

  • 안창훈;이원일;윤제용
    • 상하수도학회지
    • /
    • 제23권6호
    • /
    • pp.811-823
    • /
    • 2009
  • Seawater desalination process using a reverse osmosis (RO) membrane has been considered as one of the most promising technologies in solving the water scarcity problems in many arid regions around the world. To protect RO membrane in the process, a thorough understanding of the pretreatment process is particularly needed. Seawater organic matters (SWOMs) may form a gel layer on the membrane surface, which will increase a concentration polarization. As the SWOMs can be utilized as a substrate, membrane biofouling will be progressed on the RO membrane surface, resulting in the flux decline and increase of trans-membrane pressure drop and salt passage. In the middle of disinfection, an optimal chlorine dosage and neutralizer (sodium bisulfite, SBS) should be practiced to prevent oxidizing the surface of RO membranes. Additional fundamental research including novel non-susceptible biofouling membranes would be necessary to provide a guide line for the proper pretreatment process.

죽염의 제조과정에 따른 성분함량의 변화 및 타 염류와의 비교 (Elements in a Bamboo Salt and Comparision of Its Elemental Contents with Those in Other Salts)

  • 김영희;류효익
    • 약학회지
    • /
    • 제47권3호
    • /
    • pp.135-141
    • /
    • 2003
  • The majority of table salts are bay salts and chemical salts. However, chemical salts are known to have a different composition in biological electrolytes and quality of bay salts are getting worse due to the increasing seawater contamination. These facts may have led to the increasing usage of various health-promoting salts. Bamboo salt was introduced in 1986 as a solution to replace table salts to eliminate those detrimental effects, to promote general health and to treat diseases. Although all bamboo salts from different manufacturers have been used for the same health and medical purposes, each manufacturer utilizes different manufacturing process. The ICP analysis was used to study the changes of elemental contents in a bamboo salt during the manufacturing steps as well as these contents in various bamboo salts and other salts. After the first step, contents of Li and Sr in the bamboo salt were increased in comparison with those in the raw material, bay salt. As the next steps continued, contents of K, Ca and Ba were continuously increased. At the completion of the final step, contents of Mg and P were decreased and those of Cu, Mn and Mo were gradually increased. Bamboo salts contained lower contents of Mg, Al, B, and P, but higher contents of K, Ca, Fe, Cu, Mn, Zn, Li, Ba, Sr and Mo than bay salt.

지하수의 염분농도 변화에 미치는 양수의 영향 (Effects of the Pumping Rate on the Salt Concentration)

  • 박재성;이호진;김경호;윤영호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2006년도 학술발표회 논문집
    • /
    • pp.1895-1899
    • /
    • 2006
  • 해안지역에서는 해수와 담수의 밀도차, 조석에 의한 해수면변화등과 같은 자연적 요인과 양수, 하구에서의 골재채취, 대규모 간척사업등의 인위적 요인에 의해서 해수가 육지부로 침투되는 현상이 발생한다. 본 연구에서는 양수가 지하수의 염분농도변화에 미치는 영향을 분석하였다. 모의결과, $200m^3/day$이상 양수시에는 지하수위의 저하보다는 횡방향흐름이 가속화 됨에 따라 밀도차에 의한 흐름과 횡방향흐름 유속이 합쳐져서 해수의 급격한 유입으로 TDS농도가 증가하는 것으로 나타났다. 결론적으로 기 관측된 점자료를 이용하여 3차원 공간분포상에서 양수에 따른 염분농도의 변화를 가시적으로 확인 할 수 있으며, 이를 통하여 해안지역에서 해수침투로 인한 재해를 막고 지하수를 보다 안전하게 이용하기위한 적정양수량을 제안할 수 있을 것으로 기대된다.

  • PDF

통리해수욕장(桶里海水浴場) 녹지대조성(綠地帶造成)에 관(關)한 연구(研究)(I) - 사구지주변(砂丘地周邊)의 재해요인분석(災害要因分析) - (Studies on a Plan for Afforestation at Tong-ri Beach Resort - Analysis of Factors Causing Disasters around Beach -)

  • 조희두
    • 한국산림과학회지
    • /
    • 제77권2호
    • /
    • pp.178-185
    • /
    • 1988
  • 해수욕장(海水浴場) 녹지대(綠地帶)는 휴식시설기능(休息施設機能)과 방재기능(防災機能)을 만족(滿足)할 수 있도록 조성(造成)하여야 되므로 통리해수욕장(桶里海水浴場)에 녹지대(綠地帶)를 조성(造成)하기 위(爲)하여 방재기능측면(防災機能側面)에서 각종재해요인(各種災害要因)을 분석(分析)한 바 다음과 같다. (1) 하계(夏季)의 주풍방향(主風方向)은 SE방위(方位)이다. (2) 하계(夏季)의 1시간평균풍속(時間平均風速)은 2.1~3.0m/sec가, 순간풍속(瞬間風速)은 1.1~2.0m/sec가 발생빈도(發生頻度)가 제일 높다. (3) 구사(丘砂)의 입경(粒徑)은 세립(細粒)이며 광물조성(鑛物組成)은 양적(量的)으로 Quartz, Calcite, Feldspars, Sericite 순(順)이다. (4) 구사(丘砂)의 사별입경급(篩別粒徑級)이 작을수록 Quartz의 수량(數量)은 대단(大端)히 많아지고 Calcite와 Feldspars의 양(量)은 감소(減少)되며 Sericite의 양(量)은 증가(增加)한다. (5) 구사(丘砂)의 직경급(直徑級)에 따른 한계마찰풍속식(限界摩擦風速式) $y=4.191x^{0.221}$이다. (6) 비래염분량(飛來鹽分量)은 정선(汀線)가까이에서 제일 많고 내지(內地)로 향(向)하면서 급격(急激)히 감소(減少)한다. 포착염분량(捕捉鹽分量)의 회귀식(回歸式)은 $y=28.181{\times}(-0.369^x)$이다. (7) 해수함염량(海水含鹽量)은 33‰이다.

  • PDF

New High Recovery Membrane Modules for Desalination

  • Fujiwara, Nobuya
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2002년도 제10회 하계 Workshop
    • /
    • pp.1-12
    • /
    • 2002
  • Desalination by reverse osmosis (RO), which first entered commercial use in the 1970s, was initially mainly used for treating brackish water. Technological progress led to the development of an RO membrane enabling single-pass seawater desalination. Toyobo succeeded in developing a single-pass seawater desalination RO module composed of hollow fiber type membranes made of cellulose triacetate in 1978, and then in 1979 began production of the first commercially available double-element module. This double-element module has many advantages suitable for seawater desalination. It has high chlorine tolerance and high salt rejection, derived from the properties of the membrane material, and it is highly resistant to fouling and scaling matters due to the unique flow pattern and fiber bundle configuration. These advantages help to explain why the Toyobo double-element module has been used so successfully at the many seawater desalination plants around the world. Since the 1980s, large plants capable of desalinating several tens of thousands of cubic meters a day have sprung up around the Mediterranean and In the Middle East. The Jeddah RO Phase I Plant, which has a capacity of 56, 800m$^3$/day, went into operation in 1989. In 1994, the same sized Phase II Plant came on stream, giving the plant a huge total capacity of 113, 600m$^3$/day. The plant constructor Mitsubishi Heavy Industries, Ltd. (MHI), and the RO membrane manufacturer Toyobo Co., Ltd. In 1998, the world's largest RO seawater desalination plant in operation, which has a capacity of 128, 000m$^3$/day and is run by Saudi Arabia's Saline Water Conversion Corporation (SWCC), went into operation at Yanbu. RO seawater desalination technology has thus already reached the stage of full-scale commercial use. In order to encourage its wider use, however, RO desalination needs to be made more economical by lowering construction and water treatment costs. Toyobo has therefore developed a new economical RO desalination system by a recovery ratio of 60% using a high-pressure module with a high product flow rate. In 2000, Toyobo high recovery membrane module was selected for the largest seawater desalination plant in Japan, which has a capacity of 50, 000m$^3$/day.

  • PDF

임해 콘크리트 구조물의 염분 침투량 분석 (Chloride-ion Test of Seaside Concrete Structure)

  • 이장화;장종탁
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1990년도 가을 학술발표회 논문집
    • /
    • pp.123-124
    • /
    • 1990
  • Seaside concrete structure is deteriorated by chloride-ion, sulphate and salt cristalization in concrete pore. Therefore the amount of these chemical substance should be analyzed for evaluating the durability of seaside concrete structure. In this study, the amount of chloride-ion in concrete was surveyed in order to estimate the damage state of concrete structure within am influence of seawater.

  • PDF

응집-UF 전처리 공정에 의한 잔류 금속염이 역삼투막에 미치는 영향 (Effect of residual metal salt on reverse osmosis membrane by coagulation-UF pretreatment process)

  • 고길현;김수현;강임석
    • 상하수도학회지
    • /
    • 제33권6호
    • /
    • pp.413-420
    • /
    • 2019
  • Pretreatment system of desalination process using seawater reverse osmosis(SWRO) membrane is the most critical step in order to prevent membrane fouling. One of the methods is coagulation-UF membrane process. Coagulation-UF membrane systems have been shown to be very efficient in removing turbidity and non-soluble and colloidal organics contained in the source water for SWRO pretreatment. Ferric salt coagulants are commonly applied in coagulation-UF process for pretreatment of SWRO process. But aluminum salts have not been applied in coagulation-UF pretreatment of SWRO process due to the SWRO membrane fouling by residual aluminum. This study was carried out to see the effect of residual matal salt on SWRO membrane followed by coagulation-UF pretreatment process. Experimental results showed that increased residual aluminum salts by coagulation-UF pretreatment process by using alum lead to the decreased SWRO membrane salt rejection and flux. As the salt rejection and flux of SWRO membrane decreased, the concentration of silica and residual aluminum decreased. However, when adjusting coagulation pH for coagulation-UF pretreatment process, the residual aluminum salt concentration was decreased and SWRO membrane flux was increased.

BDD전극을 이용한 해수에서의 NaOCl 생성 (NaOCl produced by electrolysis of seawater using BDD electrode)

  • 홍경미;박수길;타케요시 오카지마;타케오 오사카;아키라 후지시마
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2005년도 하계학술대회 논문집 Vol.6
    • /
    • pp.373-374
    • /
    • 2005
  • NaOCl (Sodium hydrochlorite) have similar smell of chloride and solution of straw color. And boiling point is $110^{\circ}C$, specific gravity is 1.0(50g/l)/1.1(100g/l), Value of pH is 12. NaOCl playa role as bleach, a oxidizer, a germicide, a decolorant, a deodorant, treatment of water supply and drainage, food addition agent because strong oxidation, bleaching, sterilization effect is had. When NaOCl is produced in electrolysis of seawater, this system is composed of injection system by directly electrolysis of salt water on the spot and sodium hydrochlorite generate a safe low concentration(0.4~0.8 %).

  • PDF

헬리컬형 자기유체역학(MHD) 해수 추진기 소형 성능시험장치 개발 (Development of Small Performance Test Device for Helical-Type Magnetohydrodynamic (MHD) Seawater Propulsion Thruster)

  • 장두희;조종갑;장대식;김선호;진정태;류창수
    • 대한조선학회논문집
    • /
    • 제59권1호
    • /
    • pp.46-54
    • /
    • 2022
  • A magnetohydrodynamic (MHD) seawater propulsion thruster has been proposed to reduce propeller noise, propeller pitting, and vessel vibration originated from the propeller cavitation. The MHD thruster was also focused to overcome the limitation of propulsion velocity for the special purpose of marine ships. The research trends and key technologies in the worldwide leading countries are reviewed for the development of MHD propulsion thrusters in Korea. A small performance test device was developed firstly with a conventional solenoid magnet of ≤0.6 Tesla and a helical-type cylindrical duct(inner diameter of 5 cm) of thruster. The artificial seawater was fabricated by a salt solution including a conductivity of 5~6 S/m. The measured flow velocity of artificial seawater in the test device was 0.03~0.42 m/s (0.06~0.84 Knot) with a magnetic field strength of 0.6 Tesla and the applied currents of 10~80 A including the change of anode materials. It was found that the flow direction of seawater was reversed by the directional change of applied current in the solenoid magnet.