• Title/Summary/Keyword: salt and pH conditions

Search Result 302, Processing Time 0.031 seconds

Optimization of Producing Liquid Fuel from Photosynthetic Algal Growth

  • Pak, Jin-Hong;Lee, Shin-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.1 no.2
    • /
    • pp.111-115
    • /
    • 1991
  • The green alga, Dunaliella salina under fed-batch cultivation produced 51.12 mg of hydrocarbon per liter with maintaining 0.313 (g dry wt/l). About 20% of hydrocarbon production yield based on dry biomass was obtained from both batch and fed-batch processes. Optimum culture conditions of light intensity, pH and salt concentration were obtained as 0.0080 (kJ/$cm^2$/h), 8.0 and 1.4 (g of NaCl/l), respectively by response surface analysis. The production of hydrocarbons in D. salina was closely correlated to cell growth. Fed-batch cultivation produced more hydrocarbons and maintained better cell growth than a batch process.

  • PDF

Influence of inorganic compounds on nanofiltration membrane fouling with Al hydrolysis products (알루미늄 수화물 나노여과 막오염에 대한 공존염의 영향에 관한 연구)

  • Choi, Yang-Hun;Kweon, Ji-Hyang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.4
    • /
    • pp.479-488
    • /
    • 2011
  • Nanofiltration was performed with polyaluminium chloride solutions at different pH conditions to understand effects of inorganic compounds on aluminum hydrolysis products, i.e., three distinctive groups of aluminum species: polymeric Al at low pH; $Al(OH)_3$ at neutral pH; and ${Al(OH)_4}^-$ at high pH. The PACl solution was prepared to be approximately 4.0mM and adjusted to the designated pH. The influence of inorganic compounds on Al species fouling was investigated with 4.9mM $CaCl_2$ and 3.5mM $MgSO_4$ because $Ca^{2+}$, $Mg^{2+}$, $Cl^-$, ${SO_4}^{2-}$ are the most common inorganics in the drinking water. NF membrane fouling was measured by flux decline rate. The impact of $CaCl_2$ was not significant on the individual Al hydrolysis products fouling. However, the flux decline rate was drastically changed in the presence of $MgSO_4$. The concentration of particulate matters was considerably increased possibly due to interaction between Al species and ${SO_4}^{2-}$ where $MgSO_4$ was introduced. The particulates were accumulated on the membrane and enhanced the hydraulic resistance of the cake layer. In addition, conductivity removal of the membrane was decreased when Al-hydroxide was dominant due to reduction of membrane surface charge. The rejection of $Ca^{2+}$and $Mg^{2+}$ were considerably different, which implys that composition of inorganics paly a role on conductivity removal.

Optimal Condition for the Production of Exopolysaccharide by Marine Microorganism 96CJ10356

  • Lee, Hyeon-Sang;Park, Sin-Hye;Go, Seong-Hwan;Lee, Jong-Ho;Lee, Hong-Geum
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.137-140
    • /
    • 2000
  • Marine microorganism strain 96CJ10356 produced exopolysaccharides, designated as EPS-R. To optimize culture conditions for the production of EPS-R, carbon, nitrogen, mineral salt, temperature, and pH were examined. STN medium was suggested as follow; sucrose 20, tryptone 10, NaCl 10, $MgSO_4$ 5, $CaCl_2$ 1, $KH_2PO_4$ 0.0076, $K_2HPO_4$ 0.0083, $FeCl_2$ 0.005, $MnCl_2$ 0.001, $NaMoO_4$ 0.001, $ZnCl_2$ 0.001 (g/1) and pH 7.0 About 9.23 g/l of EPS-R was obtained from the STN medium after cultivation for 120 h at $25^{\circ}C$ in 5-liter jar fermentor with an aeration rate of 0.17 vvm. Apparent viscosity and flocculation activity of the culture broth were increased with the production of the EPS-R and the maximal values were reached to 415 cp and 1400 units/ml against 0.5 % activated carbon, respectively.

  • PDF

The Effect of Environmental Factors on Phage Stability and Infectivity on Their Host Bacteria: a Case Study for an Escherichia coli Phage (T7), a Listeria Phage (A511), and a Salmonella Phage (Felix O1)

  • Kim, Kwang-Pyo
    • Food Science and Biotechnology
    • /
    • v.16 no.3
    • /
    • pp.398-403
    • /
    • 2007
  • The effectiveness of phage biocontrol depends on the activity of bacteriophage in a given environment. In order to investigate the infectivity and the stability of bacteriophages in representative environments, three virulent phages, Listeria phage A511, Salmonella phage Felix O1, and Escherichia coli phage T7, were subjected to different temperatures, pHs and salt concentrations (NaCl). Phage infectivity was also determined in the presence of divalent cations ($Mg^{2+}$ or $Ca^{2+}$). As a result, three phages exhibited a wide range of survival rates under various environments. Phage infectivity was directly correlated with bacterial growth under the applied conditions. One exception was Felix O1 that did not kill Salmonella grown in low pH (4.5). The failure was attributed to defective adsorption of Felix O1. This finding is significant as it provides an explanation for the inefficient phage biocontrol. Therefore, such information is crucial to improve phage biocontrol of pathogens.

NaCl Concentration-Dependent Aminoglycoside Resistance of Halomonas socia CKY01 and Identification of Related Genes

  • Park, Ye-Lim;Choi, Tae-Rim;Kim, Hyun Joong;Song, Hun-Suk;Lee, Hye Soo;Park, Sol Lee;Lee, Sun Mi;Kim, Sang Hyun;Park, Serom;Bhatia, Shashi Kant;Gurav, Ranjit;Sung, Changmin;Seo, Seung-Oh;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.250-258
    • /
    • 2021
  • Among various species of marine bacteria, those belonging to the genus Halomonas have several promising applications and have been studied well. However, not much information has been available on their antibiotic resistance. In our efforts to learn about the antibiotic resistance of strain Halomonas socia CKY01, which showed production of various hydrolases and growth promotion by osmolytes in previous study, we found that it exhibited resistance to multiple antibiotics including kanamycin, ampicillin, oxacillin, carbenicillin, gentamicin, apramycin, tetracycline, and spectinomycin. However, the H. socia CKY01 resistance pattern to kanamycin, gentamicin, apramycin, tetracycline, and spectinomycin differed in the presence of 10% NaCl and 1% NaCl in the culture medium. To determine the mechanism underlying this NaCl concentration-dependent antibiotic resistance, we compared four aminoglycoside resistance genes under different salt conditions while also performing time-dependent reverse transcription PCR. We found that the aph2 gene encoding aminoglycoside phosphotransferase showed increased expression under the 10% rather than 1% NaCl conditions. When these genes were overexpressed in an Escherichia coli strain, pETDuet-1::aph2 showed a smaller inhibition zone in the presence of kanamycin, gentamicin, and apramycin than the respective control, suggesting aph2 was involved in aminoglycoside resistance. Our results demonstrated a more direct link between NaCl and aminoglycoside resistance exhibited by the H. socia CKY01 strain.

Studies on the Elimination of Aflatoxin by Various Treatment (각종 처리에 의한 Aflatoxin의 분해에 관한 연구)

  • Lee, Chung-Hee;Chung, Yung-Chai;Chung, Yeong
    • Korean Journal of Food Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.201-205
    • /
    • 1973
  • In order to eliminate aflatoxin in foodstuffs, the effects of the treatment by various pH conditions, acid and alkali, and salt on each temperature and time were studied in this experiment and the results were as follows: 1) In the low pH, aflatoxins were much more destroyed than high pH. The destruction of aflatoxins was significantly increased by heat in the same pH levels. 2) BY the treatment of 1.5 and 10% of sodium hydroxide and ammonia, aflatoxins were completely eliminated, but $40{\sim}80%$ of aflatoxins were eliminated by the treatment of 1.5 and 10% of acetic acid, hydrochloric acid and sulfuric acid. 3) By the treatment of aflatoxin in bile acid and artificial gastric juice, aflatoxins were completly eliminated and 75% respectively. 4) By the boiling $(100^{\circ}C)$ for 30 minutes in salt solution, $39{\sim}55%$ of aflatoxins was eliminated and no variation was observed as the concentration.

  • PDF

Optimal Condition for Eicosapentaenoic Acid Production and Purification from Psychrophillic Marine Baterium Shewanella sp. L93 (호냉성 해양세균 Shewanella sp. L93로부터 Eicosapentaenoic Acid 생산 및 정제를 위한 최적화 조건)

  • Mo, Sang-Joon;Hong, Hye-Won;Bang, Ji-Heon;Cho, Ki-Woong
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.3
    • /
    • pp.218-223
    • /
    • 2011
  • To obtain eicosapentaenoic acid (EPA)-producing bacteria, some 600 strains of bacteria were isolated from Antarctic sediment and marine organisms during the summer expedition of 1999-2000 and 7 EPA-producing bacteria were obtained through screening with TLC and GC. A strain designated as L93 showed the highest EPA production, which was gram-negative, rod-shaped bacterium. L93 strain was identified as Shewanella sp., from the sequence analysis of 16S rDNA. Optimal conditions temperature and pH for the growth and EPA production were about $4^{\circ}C$ and pH 7. In addition, its production was optimized by 50%(w/v) sea salt. We establish the optimal production system to produce about 320 mg per liter by using this optimal EPA production conditions. EPA-methyl ester was purified from cultured L93 strain to a purity of higher than 97% and typical purification yield is greater than 72% of the input amount via urea complexation and HPLC.

Optimization of Culture Conditions for the Bioconversion of Vitamin $D_3\;to\;1{\alpha}$,25-Dihydroxyvitamin $D_3$ Using Pseudonocardia autotrophica ID9302

  • Kang, Dae-Jung;Lee, Hong-Sub;Park, Joon-Tae;Bang, Ji-Sun;Hong, Soon-Kwang;Kim, Tae-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.408-413
    • /
    • 2006
  • We assessed the ability of a Pseudonocardia sp. from soil samples to bioconvert vitamin $D_3$. The optimal culture conditions for the bioconversion of vitamin $D_3$ to active $1{\alpha}$,25-dihydroxyvitamin $D_3$ were investigated by varying the carbon and nitrogen sources, the metal salt concentrations, the initial pH, and the temperature. Microbial transformations were carried out with the addition of vitamin $D_3$ dissolved in ethanol. They were sampled by extraction with methanol-dichloromethane and the samples were examined by HPLC. Optimum culture conditions were found to be 0.4% yeast extract, 1% glucose, 3% starch, 1% fish meal, 0.2% NaCl, 0.01% $K_2HPO_4$, 0.2% $CaCO_3$, 0.01% NaF, and pH 7.0 at $28^{\circ}C$. The optimal timing of the addition of vitamin $D_3$ for the production of calcitriol by Pseudonocardia autotrophica ID9302 was concurrent with the inoculation of seed culture broth. Maximum calcitriol productivity and the yield of bioconversion reached a value of 10.4mg/L and 10.4% respectively on the 7th day in a 75L fementer jar under the above conditions.

The Quality Properties of Rapidly Fermented Mukeun (Long-Term Fermented) Kimchi with Different Salinity and Fermented Temperature (염도와 발효온도를 달리하여 제조한 단기 숙성 묵은 김치의 품질특성)

  • Ko, Myeong-Sin;Hur, Sung-Won;Kim, Mi-Ran;Jung, Seo-Jin;Lee, Hyeran;Cho, Mi-Sook
    • The Korean Journal of Food And Nutrition
    • /
    • v.28 no.3
    • /
    • pp.335-342
    • /
    • 2015
  • We conducted a study on mukeun (long-term fermented) kimchi ripened over one year in an attempt to develop an alternative salt and improve the quality of low-salt kimchi. However, few studies have focused on mukeun kimchi that has been fermented for a short time in different salinity conditions. Therefore, the aim of this study was to investigate the physicochemical characteristics that occur during the fermentation of mukeun kimchi samples produced with different conditions of salinity and fermentation temperature. Kimchi samples were produced at 3 different salinity levels: 1.6%, 2.4%, and 3.2%. Previous studies revealed that the optimum fermentation time at pH 4.1 was 128 hours at $18^{\circ}C$ and 417 hours at $12^{\circ}C$; furthermore, the samples were stored for 12 weeks under the condition of $-1^{\circ}C$ after fermentation. Total cell increased on week 0 of storage and decreased according to the storage period. Total cell was the highest at 3.2% salinity and had a high value at $18^{\circ}C$ temperature during the storage period. Based on the physiochemical results, mukeun kimchi at a salinity of 3.2% can be fermented for a short time, and low-salt kimchi at a salinity of 1.6% and fermented at $18^{\circ}C$, is similar to mukeun kimchi at 2.4% salinity.

Screening and Characterization of Potential Bacillus Starter Cultures for Fermenting Low-Salt Soybean Paste (Doenjang)

  • Jeon, Hye Hee;Jung, Ji Young;Chun, Byung-Hee;Kim, Myoung-Dong;Baek, Seong Yeol;Moon, Ji Young;Yeo, Soo-Hwan;Jeon, Che Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.666-674
    • /
    • 2016
  • The bacterial strains were screened as potential starters for fermenting low-salt doenjang (a Korean traditional fermented soybean paste) using Korean doenjang based on proteolytic and antipathogenic activities under 6.5-7.5% NaCl conditions. Phylogenetic analysis based on 16S rRNA gene sequences showed that they all belonged to the genus Bacillus. Proteolytic and antipathogenic activities against Escherichia coli, Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, and Aspergillus flavus, as well as fibrinolytic, amylase, and cellulase activities of the 10 strains were quantitatively evaluated. Of these, strains D2-2, JJ-D34, and D12-5 were selected, based on their activities. The functional, phenotypic, and safety-related characteristics of these three strains were additionally investigated and strains D2-2 and D12-5, which lacked antibiotic resistance, were finally selected. Strains D2-2 and D12-5 produced poly-γ-glutamic acid and showed various enzyme activities, including α-glucosidase and β-glucosidase. Growth properties of strains D2-2 and D12-5 included wide temperature and pH ranges, growth in up to 16% NaCl, and weak anaerobic growth, suggesting that they facilitate low-salt doenjang fermentation. Strains D2-2 and D12-5 were not hemolytic, carried no toxin genes, and did not produce biogenic amines. These results suggest that strains D2-2 and D12-5 can serve as appropriate starter cultures for fermenting low-salt doenjang with high quality and safety.