• Title/Summary/Keyword: saline water

Search Result 751, Processing Time 0.027 seconds

Application of Electrical Resistivity Measurement to an Evaluation of Saline Soil in Cropping Field (염류집적 농경지에서 전기비저항 탐사기법의 활용성)

  • Yoon, Sung-Won;Park, Sam-Gyu;Chun, Hyen-Jung;Han, Keung-Hwa;Kang, Seong-Soo;Kim, Myung-Suk;Kim, Yoo-Hak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1035-1041
    • /
    • 2011
  • Salinity of soil under the plastic film houses in Korea is known as a significant factor to lower the crop production and to hamper the sustainable agricultural land management. In this study we propose a field monitoring technique to examine the methods applied to minimize the adverse effect of salts in soil based on the relationship between soil electrical characteristics and soil properties. Field experiments for 4 different treatments (water only, fertilizer only, DTPA only, and DTPA and fertilizer together) were conducted on soils at the plastic film house built for cultivating a cucumber plant located at Chunan-si, Chungchungnam-do in Korea. The electrical resistivity was measured by both a dipole-dipole and wenner multi-electrodes array method. After the electrical resistivity measurement we also measured the soil water content, temperature, and electrical conductivity on surface soil. The resulted image of the interpreted resistivity by the inversion technique presented a unique spatial distribution depending on the treatment, implying the effect of the different chemical components. It was also highly suspected that resistivity response changed with the nutrients level, suggesting that our proposed technique could be the effective tool for the monitoring soil water as well as nutrient during the cropping period. Especially, subsoils under DTPA treatment at 40 to 60 cm depth typically presented lower soil water accumulation comparing to subsoils under non-DTPA treatment. It is considered that DTPA resulted in increase of a root water uptake. However, our demonstrated results were mainly based on qualitative comparison. Further experiments need to be conducted to monitor temporal changes of electrical resistivity using time lapse analysis, providing that a plant root activity difference based on changes of soil water and nutrients level in time.

Image Capturing of Dispersed Phases in DCHXs by Electric Tomography

  • Chun, Won-Gee;Kim, Min-Chan;Lee, Heon-Ju;Kang, Yong-Heack;Kwon, Hyok-Bo
    • Journal of the Korean Solar Energy Society
    • /
    • v.21 no.2
    • /
    • pp.69-78
    • /
    • 2001
  • This paper introduces the physical phenomena involved in Direct Contact Heat Exchangers (DCHXs) and also investigates the possibility of applying of EIT(Electrical Impedance Tomography) technique for capturing the images of dispersed phases as they stream through a stagnant body of water. A number of cases are studied where two dimensional cross-sectional static images are given for fictitious and actual masses present in a column of water(saline solution). In most direct contact liquid-liquid heat exchangers, oil or hydrocarbon with a density different(lighter or heavier) from water is normally used as dispersed working fluid. The main difficulty that arises with this arrangement lies in the elucidation of complicated flow field where the dispersed phase fluid tends to change its shape and size constantly during its journey through the other phase(water). This paper presents a number of results with different types of dispersed phases that are immiscible with water. The EIT technique has been employed in this context to test its applicability in capturing the dynamic images of dispersed phases. It shows static images of dispersed phases where dynamic images could be obtained by simply extending the algorithms and strategies employed in the present analysis.

  • PDF

Study on Water Level and Salinity Characteristics of Nakdong River Estuary Area by Discharge Variations at Changnyeong-Haman Weir(1) (창녕·함안보 방류량에 따른 하류지역 및 하구역의 수리환경특성에 관한 연구(1))

  • Kim, Tae-Woo;Yang, Hyun-Soo;Park, Byeong-Woo;Yoon, Jong-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.361-366
    • /
    • 2018
  • The present study analyzed the variation factors in inducing a salinity change using the existing observation network in the section between the Nakdong River Estuary Barrage and Changnyeong-Haman Weir, and also examined the seasonal changes in precipitation, salinity, and discharge. Furthermore, this study analyzed the causes of a salinity increase by collecting observational data during a period when abnormal salinity occurred, and further investigated the salinity transfer time in a section of approximately 5.3 km from the Nakdong River Estuary Barrage to Nakdong River Bridge to understand the behavioral characteristics of the salinity moving upstream. The study results would make it possible to control the increase in salinity and block salt water from moving upstream by understanding the salinity variation characteristics according to the discharge amount. This will provide stability in collecting water from various residential, agricultural, and industrial sources through water intake facilities scattered near the Nakdong River Estuary Barrage.

Solute patterns of four halophytic plant species at Suncheon Bay in Korea

  • Choi, Sung-Chul;Choi, Deok-Gyun;Hwang, Jeong-Sook;Kim, Jong-Guk;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.37 no.3
    • /
    • pp.131-137
    • /
    • 2014
  • To investigate the solute pattern of salt marsh plants in Suncheon Bay in Korea, plants and soil samples were collected at three sites from July to September 2011. The soil pH around the investigated species was weakly alkaline, 6.9-8.1. The total ion and Cl- content of site 1 gradually increased, while those of site 2 and site 3 were lowest in August and highest in September. The exchangeable $Ca^{2+}$, $Mg^{2+}$ and $K^+$ in the soil were relatively constant during the study period, but the soil exchangeable $Na^+$ content was variable. Carex scabrifolia and Phragmites communis had constant leaf water content and very high concentrations of soluble carbohydrates during the study period. However, Suaeda malacosperma and S. japonica had high leaf water content and constant very low soluble carbohydrate concentrations. Carex scabrifolia accumulated similar amounts of $Na^+$ and $K^+$ ions in its leaves. Phragmites communis contained a high concentration of $K^+$ ions. Suada japonica and S. malacosperma had more $Na^+$ and $Cl^-$ ions than $K^+$ ions in their leaves. Suaeda japonica had higher levels of glycine betaine in its leaves under saline conditions than C. scabrifolia and P. communis. Consequently, the physiological characteristics of salt marsh chenopodiaceous plants (S. japonica and S. malacosperma) were the high storage capacity for inorganic ions (especially alkali cations and chloride) and accumulation of glycine betaine, but monocotyledonous plant species (C. scabrifolia and P. communis) showed high $K^+$concentrations, efficient regulation of ionic uptake, and accumulation of soluble carbohydrates. These characteristics might enable salt marsh plants to grow in saline habitats.

Development of Electrical Resistivity Survey System for Geotechnical Centrifuge Modeling (원심모형실험을 위한 전기비저항 탐사 시스템 구축)

  • Cho, Hyung-Ik;Bang, Eun-Seok;Yi, Myeong-Jong;Choo, Yun-Wook;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.10
    • /
    • pp.19-31
    • /
    • 2014
  • In order to investigate ground state change visually in physical model during centrifuge testing, electrical resistivity survey was adopted. Commercial resistivity survey equipment verified at various in-situ sites was utilized. The resistivity survey equipment installed in centrifuge facility was remotely controlled through intranet and electrical resistivity images obtained while centrifuge testing was being checked by real-time inversion. To verify the stable operation of the developed resistivity survey system, preliminary tests were conducted. Model ground was uniformly constructed using unsaturated soil and saline water was dropped on the ground surface to simulate contaminant flow situation. During the 10 g centrifuge tests, electrical resistivity was continuously detected and the testing results were compared with those of identically carried out 1 g centrifuge tests. In addition, the electrical resistivity was directly measured immediately after the centrifuge test by open cutting the model. Finally, reliability of electrical resistivity survey in the centrifuge test was verified by comparing those testing results.

A Study on the Detection Characteristics of the Magneto-Plethysmography According to Fluid Properties (유체의 성질에 따른 자계용적맥파의 검출 특성에 관한 연구)

  • Kim, Sang-Min;Lee, Kang-Hwi;Lee, Seong-Su;Lee, Hyeok-Jae;Lee, Byoung-Hun;Kim, Kyeoung-Seop;Lee, Jeong-Whan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.946-953
    • /
    • 2018
  • Photo-plethysmography (PPG), which measures changes in the peripheral blood flow of a human body using difference in absorption rate of light, is a measurement method that is studied and used in clinical and various applications due to its simple circuit configuration and measurement convenience. Magneto-plethysmography (MPG), which is newly developed by our team, is a method of measuring changes in the conductivity of biological tissues by using a eddy current induced by a time-varying magnetic field, and is not subject to optical interference. In this study, we investigated the detection characteristics of MPG according to the change of the conductivity of the object and fluid to be measured by simultaneously measuring PPG and MPG. In order to control the speed of fluid known in advance, a blood flow simulator was implemented and used. The fluid used in the experiment was general mineral water and physiological saline (0.9% NaCl) solution. Experimental results show that the amplitude change of the measured PPG was 0.3% in normal water and saline solution, and that of MPG was 77.3%. Therefore, it is considered that the magneto-plethysmography (MPG) has a strong correlation with the conductivity of the fluid.

Immune-enhancing Effect of Mubigangjang-Ju (무비강장주의 면역증진 효과)

  • Shin Soon Shik;Kim Bo Kyung;An Chang Su;Kim Gyeong Cheal
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.436-439
    • /
    • 2004
  • Mubigangjang-Ju (MGJ) is a traditional wine, fermented extract of Cynanchum wilfordii, Angelicae gigantis and Epimedium koreanum etc. In the present study, we comparatively investigated the immune-enhancing effect of fermented extract (MGJ) and water extract (WE). Forced swimming test (FST) was performed as a model of activity test in mice and measured blood urea nitrogen (BUN), aspartate aminotransferase (AST), alanine aminotransferase (ALT), lactic dehydrogenase (LDH), glucose (Glc) and total protein (TP) in the serum. Each extracts were orally administered into mice, 10 ㎖/kg, once per day for 7 days using a feeding atraumatic needle. After 3 days, on FST, the immobility time was decreased in the MGJ-fed group (133.7±18.6 s) in comparison with the saline-fed group (155.8±16.6 s). After 7 days, the immobility time was significantly decreased in the MGJ-fed group (105.3±12.7 s) in comparison with the saline-fed group (171.3±8.1 s). In addition, the content of AST was significantly decreased and the contents of BUN, ALT and LDH in the blood serum was also decreased. Whereas, the content of Glc tend to increase and TP level was not changed. However, WE had no effect on all experiments. The present results suggest that fermented extract was more effective than water extract and it may be useful for the immune-enhancing agent.

Studies on the Nootropic and Anti-amnestic and Anxiolytic-like Effects of G.J.D-P.P.A. in Mice (공진단(拱辰丹)과 영신초(靈神草), 원지(遠志), 석창포(石菖蒲) 혼합제제의 기억력과 인지기능 개선 및 항불안에 관한 연구)

  • Choi, Cheol-Hong;Kim, Soo-Hyun;Chung, Dae-Kyoo
    • Journal of Oriental Neuropsychiatry
    • /
    • v.22 no.2
    • /
    • pp.85-105
    • /
    • 2011
  • Objectives : The purpose of this study was to characterize the neuroprotective effects and anxiolytic-like effects of Gongjin-dan and Polygala japonica, Polygala tenuifolia, Acorus gramineus mixed pills(G.J.D-P.P.A.). Methods : The neuroprotective effects of G.J.D-P.P.A. determined by the passive avoidance and Y-maze tasks and Morris water maze task, and the anxiolytic-like effects of the G.J.D-P.P.A. using an elevated plus-maze(EPM) in mice. Results : Drug-induced amnesia was induced by treating animals with scopolamine(1 mg/kg, i.p.). A single G.J.D-P.P.A.(400 and 800 mg/kg) administration significantly enhanced cognitive function and attenuated scopolamine-induced cognitive impairments as determined by the passive avoidance and Y-maze tasks(P < 0.05) and also reduced escape-latency on the Morris water maze task(P < 0.05). The administration of GJD-PPA(400 and 800 mg/kg) significantly increased the percentage of time spent in open arms and entries into the open arms of the EPM compared with saline-treated control group(P < 0.05). Moreover, there were no changes in the locomotor activity and myorelaxant effects in any group compared with saline-treated control group. Conclusions : These results suggest that GJD-PPA dramatically possesses the anti-amnestic and cognitive-enhancing activities related to the memory processes, and promotes the anxiolytic-like activity in mice.

Removal of Organic and Nutrients in Fish Market Wastewater using Sequencing Batch Reactor (SBR) (SBR공정을 이용한 수산물 위판장 폐수에서 유기물 및 질소 제거)

  • Kim, Sung-Ju;Lee, Dae-Hee;Park, Hung-Suck
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.46-51
    • /
    • 2007
  • This research work aims at treating saline wastewater generated from a fish market using four Sequencing Batch Reactors (SBR) operated under different conditions. The effect of C/N ratio (3, 6) and salt concentration (0.5~2%) on organic and nitrogen removal was studied. The synthetic wastewater prepared with glucose ($C_6H_{12}O_6$) as the primary carbon source along with ammonium chloride ($NH_4Cl$) was used in the three reactors. The fill, anoxic, aeration, settle and draw conditions were 2 hr, 4 hr, 4 hr and 2 hr respectively. The fourth reactor was operated at different conditions to investigate the practical feasibility of SBR application to handle fish market wastewater generated in Ulsan city that had fluctuating loading characteristics. Though the unacclimated sludge was initially affected by the salt concentration, the acclimated sludge removed 95% of the organics irrespective of the NaCl concentration and C/N ratio. However, the removal of nitrogen was affected more by C/N ratio than the salt concentration. While handling fish market wastewater, though the organic and nitrogen loading rate were varying between $0.009{\sim}0.259gCOD_{OH}/gVSS/day$ and 0.005~0.034 gN/gVSS/day, the effluent concentrations were far less than the effluent standard of $120mgCOD_{OH}/L$ and 60 mgN/L respectively, except when loading rates were fluctuating and 4 times higher than the average.

Breakdown Properties in Physiological Saline by High Voltage Pulse Generator

  • Byeon, Yong-Seong;Song, Ki-Baek;Uhm, Han-Sup;Shin, Hee-M.;Choi, Eun-Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.333-333
    • /
    • 2011
  • We have investigated the breakdown properties in liquids by high voltage pulse system. High voltage pulse power system is consisted of the Marx-generator with two capacitors (0.5 ${\mu}F$, withstanding voltage is 40 kV), to which the charging voltage can be applied to maximum 30 kV DC, spark gap switch and charging resistor of 20 $M{\Omega}$. We have made use of tungsten pin electrodes of anode-cathode (A-K), which are immersed into the liquids. The breakdown voltage and current signals are measured by high voltage probe (Tektronix P6015A) and current monitor (IPC CM-1.S). Especially the high speed breakdown or plasma propagation characteristics in the pulsed A-K gap have been investigated by using the high speed ICCD camera. We have measured the electron temperature through the Boltzmann plot method from the breakdown spectrums. Here the A-K gap has been changed by 1 mm, 2 mm, and 3 mm. The used liquids are distilled water and solution of salt (0.9 %). The output voltage and current signals at breakdown in distilled water are shown to be bigger than those in saline solution. The breakdown voltage and current characteristics in liquids will be discussed in accordance with A-K gap distances. It is also found that the electron temperatures and plasma densities in liquids are decreased in conformity with A-K gap.

  • PDF