• Title/Summary/Keyword: saline environment

Search Result 174, Processing Time 0.024 seconds

Nanoparticle Effect on Durability of Carbon fiber/Epoxy Composites in Saline Water Environment (염수환경에서 탄소섬유/에폭시 복합재료의 내구성에 미치는 나노입자의 영향)

  • Kim, Bu-Ahn;Moon, Chang-Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.64-68
    • /
    • 2014
  • This study was conducted to investigate the durability of carbon fiber/epoxy composites (CFRP) in a saline water environment. The carbon fiber/epoxy composites were modified to use nanoparticles such as carbon nanotubes and titanum oxide. These hybrid composites were exposed to a saline water environment for a certain period. The weight gain according to the immersion time, a quasi-static tensile test, and micro-graphic characterization were used to investigate the samples exposed to the saline water environment. The weight gains increased with increasing immersion time. The weight gains of the hybrid composites were lower than that for pure CFRP throughout the entire immersion time. The tensile strengths decreased with increasing immersion time. The tensile strengths of the hybrid composites were higher than that of the pure CFRP throughout the entire immersion time. The pure CFRP was observed to be more degraded than the hybrid composites in the saline water environment. Therefore, it was concluded that the addition of nanoparticles to CFRP could lead to improved durability in a saline water environment.

Present Status and Future Prospect of Environment Agriculture in Daeho Reclain ed Saline Area (대호간척지의 환경농업 추진현황과 발전방향)

  • Chae Je-Cheon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2001.09a
    • /
    • pp.72-90
    • /
    • 2001
  • Environment agriculture carried out from 1999 in Daeho reclaimed saline area, located in central east cost of Choongnam Korea, resulted in dramatic reduction of amount of nitrogen fertilizer and application times and amount of pesticides. The ecological status of Daeho reclaimed saline area was considered to still very sound from the results of ecological survey on flora and fauna. However, it was desirable to adapt precision agriculture for production of high eating quality of rice and preservation of Daeho ecosystem. Especially, precise application of nitrogen and phosphorus fertilizer was recommendable for prevention of water pollution in environment rice cultivation by duck or mud snail or crab. The bioefficacy of Scirpus maritimus and Echinochloa crus-galli in paddy field of environment rice cultivation by duck or mud snail or crab in Daeho reclaimed saline area was revealed very low. Therefor, it was concluded that the pre-measures of reduction of natural weed population were necessary for successful environment agriculture. The most desirable and ideal environmentally sound agriculture in Daeho reclaimed saline area was performance of crop rotation, introduction of legume crops and green manure crops, and also, simultaneous management of crop production and animal husbandry for smooth flow of energy cycle within the closed Daeho ecosystem.

  • PDF

Assessment and Correlation of Saline Soil Characteristics using Electrical Resistivity

  • Mustapha Maliki;Fatima Zohra Hadjadj;Nadia Laredj;Hanifi Missoum
    • Journal of Electrochemical Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.205-214
    • /
    • 2023
  • Soil salinity is becoming one of the most devastating environmental hazards over the years. Soil investigation involves fast, low cost and non disturbing methods to measure soil characteristics for both construction projects as well as for agricultural use. The electrical resistivity of saline soils is greatly governed by salt concentration and the presence of moisture in soil matrix. Experimental results of this investigation highlight that there is a significant relationship between the electrical resistivity of soil samples mixed with chloride solutions (NaCl, KCl, and MgCl2) at various concentrations, and soil physical properties. Correlations represented by quadratic functions were obtained between electrical resistivity and soil characteristics, namely, water content, degree of saturation and salt concentration. This research reveals that the obtained correlations between electrical resistivity, salt concentration, water content and degree of saturation are effective for predicting the characteristics of salt affected soils in practice, which constitute a governing element in the assessment of saline lands sustaining infrastructure.

제주도 동부해안 한동리지역의 수문지질학적 연구

  • 김기표;윤정수;박원배
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.9-12
    • /
    • 2002
  • The purpose of this study is to understand the high saline water phenomenon of Handong-ri area in the eastern coast of Jeju Island, were investigate the tidal effect of groundwater level, variation of electric conductivity and temperature, geological logging on the monitoring wells, chemical water quality, and ratios of oxygen istope of groundwater and seawater Results in investigating variation of interface zone of freshwater and saline water represented that the hyaloclastites formed at below groundwater table is developing toward the coast; this area consisted of stratum of good permeability. Hyaloclastites is presumed the main path of the high salinity water There are a lot of movement by the tide at upper layer. Salinity of lower layer spreads to upper up step in proportion to tidal energy. Because of hydrogeological characteristics, Interface zone of freshwater and saline water is made, High salinity of groundwater occur in east coastal area of Jeju Island. Therefore, I think that high saline groundwater phenomenon is natural condition by simple mixing.

  • PDF

Agricultural Systems for Saline Soil: The Potential Role of Livestock

  • Masters, D.G.;Norman, H.C.;Barrett-Lennard, E.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.2
    • /
    • pp.296-300
    • /
    • 2005
  • Human-induced soil salinity is becoming a major threat to agriculture across the world. This salinisation occurs in both irrigated and rain-fed agricultural zones with the highest proportions in the arid and semi-arid environments. Livestock can play an important role in the management and rehabilitation of this land. There are a range of plants that grow in saline soils and these have been used as animal feed. In many situations, animal production has been poor as a result of low edible biomass production, low nutritive value, depressed appetite, or a reduction in efficiency of energy use. Feeding systems are proposed that maximise the feeding value of plants growing on saline land and integrate their use with other feed resources available within mixed livestock and crop farming systems. Salt-tolerant pastures, particularly the chenopod shrubs, have moderate digestible energy and high crude protein. For this reason they represent a good supplement for poor quality pastures and crop residues. The use of salt-tolerant pasture systems not only provides feed for livestock but also may act as a bio-drain to lower saline water tables and improve the soil for growth of alternative less salt tolerant plants. In the longer term there are opportunities to identify and select more appropriate plants and animals for saline agriculture.

Effect of Compost and Gypsum Application on the Chemical Properties and Fertility Status of Saline-Sodic Soil

  • Sarwar, Ghulam;Ibrahim, Muhammad;Tahir, Mukkram Ali;Iftikhar, Yasir;Haider, Muhammad Sajjad;Noor-Us-Sabah, Noor-Us-Sabah;Han, Kyung-Hwa;Ha, Sang-Keun;Zhang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.510-516
    • /
    • 2011
  • Salt-affected soils are present in Pakistan in significant quantity. This experiment was conducted to assess the effectiveness of compost for reclamation and compare its efficiency with gypsum. For this purpose, various combinations of compost and gypsum were used to evaluate their efficacy for reclamation. A saline-sodic field having $pH_s$ 8.90, $EC_e$ $5.94dS\;m^{-1}$ and SAR $34.5(mmol\;L^{-1})^{1/2}$, SP (saturation percentage) 42.29% and texture Sandy clay loam, gypsum requirement (GR) $8.75Mg\;ha^{-1}$ was selected for this study. The experiment comprised of seven treatments (control, gypsum alone, compost alone and different combinations of compost and gypsum based on soil gypsum requirements). Inorganic and organic amendments (gypsum and compost) were applied to a saline sodic soil. Rice and wheat crops were grown. Soil samples were collected from each treatment after the harvest of both crops and analyzed for chemical properties (electrical conductivity, soil reaction and sodium adsorption ratio) and fertility status (organic matter, available phosphorus and potassium contents) of soil. Results of this study revealed that compost and gypsum improved chemical properties (electrical conductivity, soil reaction and sodium adsorption ratio) of saline sodic soil to the desired levels. Similarly, all parameters of soil fertility like organic matter, available phosphorus and potassium contents were built up with the application of compost and gypsum.

Feasibility of Hydraulic Fracturing for Securing Additional Saline Groundwater in the Land-based Aquaculture Farm (양식장 용수 추가 확보를 위한 수압파쇄 적용성 평가)

  • Lee, Byung Sun;Kim, Young In;Park, Hak Yun;Cho, Jung Hwan;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.7
    • /
    • pp.34-42
    • /
    • 2015
  • Feasibility tests for the hydraulic fracturing were conducted in order to secure additional saline groundwater for irrigating to the land-based aquaculture farm. Two boreholes were placed to the aquaculture farm A and B, respectively. A hydraulic fracturing using single packer was applied to major fracture zones within two boreholes. To identify effects of hydraulic fracturing on securing additional saline groundwater, some selective methods including well logging methods, pumping tests, and groundwater quality analysis were commonly applied to the boreholes before and after the hydraulic fracturing. Enlarging/creating fracture zones, increasing water contents in bedrock near boreholes, and increasing transmissivity were observed after the hydraulic fracturing. Even though the hydraulic fracturing could be an alternative to secure additional saline groundwater to the land-based aquaculture farm, salinity of the groundwater did not meet optimal thresholds for each fingerling in two farms: Fresh submarine groundwater discharge flowed the more into borehole of the farm A that resulted in decreasing a salinity value. Increased saline groundwater quantity in the borehole of the farm B rarely affect to the salinity. Although salinity problem of groundwater limited its direct use for the farms, the mixing with seawater could be effectively used for the fingerlings during the early stage. A horizontal radial collector well placed in the alluvial layer could be an alternative for the farms as well.

Growth and Physiological Properties of Wild Type and Mutants of Halomonas subglaciescola DH-l in Saline Environment

  • Ryu, Hye Jeong;Jeong, Yoo Jung;Park, Doo Hyun
    • Journal of Microbiology
    • /
    • v.42 no.3
    • /
    • pp.174-180
    • /
    • 2004
  • A halophilic bacterium was isolated from fermented seafood. The 16S rDNA sequence identity between the isolate and Halomonas subglaciescola AJ306801 was above 95%. The isolate that did not grow in the condition without NaCl or in the condition with other sodium (Na$\^$+/) or chloride ions (Cl$\^$-/) instead of NaCl was named H. subglaciescola DH-l. Two mutants capable of growing without NaCl were obtained by random mutagenesis, of which their total soluble protein profiles were compared with those of the wild type by two-dimensional electrophoresis. The external compatible solutes (betaine and choline) and cell extract of the wild type did not function as osmoprotectants, and these parameters within the mutants did not enhance their growth in the saline environment. In the proton translocation test, rapid acidification of the reactant was not detected for the wild type, but it was detected for the mutant in the condition without NaCl. From these results, we derived the hypothesis that NaCl may be absolutely required for the energy metabolism of H. subglaciescola DH-l but not for its osmoregulation, and the mutants may have another modified proton translocation system that is independent of NaCl, except for those mutants with an NaCl-dependent system.

Hydrogeological Characterization of Groundwater and Surface Water Interactions in Fresh-Saline Water Mixed Zone of the East Coast Lagoon Area, Korea (동해안 석호 담염수 혼합대에서 지하수와 지표수 상호작용의 수리지질학적 특성 평가)

  • Jeon, Woo-Hyun;Kim, Dong-Hun;Lee, Soo-Hyoung;Hwang, Seho;Moon, Hee Sun;Kim, Yongcheol
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.144-156
    • /
    • 2021
  • This study examined hydrogeological characteristics of groundwater and surface water interaction in the fresh-saline water mixed zone of East Coast lagoon area, Korea, using several technical approaches including hydrological, lithological, and isotopic methods. In addition, the fresh-saline water interface was evaluated using vertical electrical conductivity (EC) data. For this purpose, three monitoring wells (SJ-P1, SJ-P2, and SJ-P3) were installed across the Songji lagoon at depths of 7.4 to 9.0 m, and water level, EC, and temperature at the wells and in the lagoon (SJ-L1) were monitored using automatic transducers from August 1 to October 21, 2021. Isotopic composition of the groundwater, lagoon water, and sea water were also monitored in the mid-September, 2013. The mixing ratios calculated from oxygen and hydrogen isotopic composition decreased with increasing depth in the monitoring wells, indicating saline water intrusion. In the study area, the interaction of groundwater-surface water-sea water was evident, and residual salinity in the sedimentary layers created in the past marine environment showed disorderly characteristics. Moreover, the horizontal flow at the lagoon's edge was more dominant than the vertical flow.