• Title/Summary/Keyword: salient feature detection

Search Result 24, Processing Time 0.027 seconds

An Artificial Visual Attention Model based on Opponent Process Theory for Salient Region Segmentation (돌출영역 분할을 위한 대립과정이론 기반의 인공시각집중모델)

  • Jeong, Kiseon;Hong, Changpyo;Park, Dong Sun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.7
    • /
    • pp.157-168
    • /
    • 2014
  • We propose an novel artificial visual attention model that is capable of automatic detection and segmentation of saliency region on natural images in this paper. The proposed model is based on human visual perceptions in biological vision and contains there are main contributions. Firstly, we propose a novel framework of artificial visual attention model based on the opponent process theory using intensity and color features, and an entropy filter is designed to perceive salient regions considering the amount of information from intensity and color feature channels. The entropy filter is able to detect and segment salient regions in high segmentation accuracy and precision. Lastly, we also propose an adaptive combination method to generate a final saliency map. This method estimates scores about intensity and color conspicuous maps from each perception model and combines the conspicuous maps with weight derived from scores. In evaluation of saliency map by ROC analysis, the AUC of proposed model as 0.9256 approximately improved 15% whereas the AUC of previous state-of-the-art models as 0.7824. And in evaluation of salient region segmentation, the F-beta of proposed model as 0.7325 approximately improved 22% whereas the F-beta of previous state-of-the-art models.

Performance Evaluation of Pixel Clustering Approaches for Automatic Detection of Small Bowel Obstruction from Abdominal Radiographs

  • Kim, Kwang Baek
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.3
    • /
    • pp.153-159
    • /
    • 2022
  • Plain radiographic analysis is the initial imaging modality for suspected small bowel obstruction. Among the many features that affect the diagnosis of small bowel obstruction (SBO), the presence of gas-filled or fluid-filled small bowel loops is the most salient feature that can be automatized by computer vision algorithms. In this study, we compare three frequently applied pixel-clustering algorithms for extracting gas-filled areas without human intervention. In a comparison involving 40 suspected SBO cases, the Possibilistic C-Means and Fuzzy C-Means algorithms exhibited initialization-sensitivity problems and difficulties coping with low intensity contrast, achieving low 72.5% and 85% success rates in extraction. The Adaptive Resonance Theory 2 algorithm is the most suitable algorithm for gas-filled region detection, achieving a 100% success rate on 40 tested images, largely owing to its dynamic control of the number of clusters.

Automatic pronunciation assessment of English produced by Korean learners using articulatory features (조음자질을 이용한 한국인 학습자의 영어 발화 자동 발음 평가)

  • Ryu, Hyuksu;Chung, Minhwa
    • Phonetics and Speech Sciences
    • /
    • v.8 no.4
    • /
    • pp.103-113
    • /
    • 2016
  • This paper aims to propose articulatory features as novel predictors for automatic pronunciation assessment of English produced by Korean learners. Based on the distinctive feature theory, where phonemes are represented as a set of articulatory/phonetic properties, we propose articulatory Goodness-Of-Pronunciation(aGOP) features in terms of the corresponding articulatory attributes, such as nasal, sonorant, anterior, etc. An English speech corpus spoken by Korean learners is used in the assessment modeling. In our system, learners' speech is forced aligned and recognized by using the acoustic and pronunciation models derived from the WSJ corpus (native North American speech) and the CMU pronouncing dictionary, respectively. In order to compute aGOP features, articulatory models are trained for the corresponding articulatory attributes. In addition to the proposed features, various features which are divided into four categories such as RATE, SEGMENT, SILENCE, and GOP are applied as a baseline. In order to enhance the assessment modeling performance and investigate the weights of the salient features, relevant features are extracted by using Best Subset Selection(BSS). The results show that the proposed model using aGOP features outperform the baseline. In addition, analysis of relevant features extracted by BSS reveals that the selected aGOP features represent the salient variations of Korean learners of English. The results are expected to be effective for automatic pronunciation error detection, as well.

Detecting Salient Regions based on Bottom-up Human Visual Attention Characteristic (인간의 상향식 시각적 주의 특성에 바탕을 둔 현저한 영역 탐지)

  • 최경주;이일병
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.2
    • /
    • pp.189-202
    • /
    • 2004
  • In this paper, we propose a new salient region detection method in an image. The algorithm is based on the characteristics of human's bottom-up visual attention. Several features known to influence human visual attention like color, intensity and etc. are extracted from the each regions of an image. These features are then converted to importance values for each region using its local competition function and are combined to produce a saliency map, which represents the saliency at every location in the image by a scalar quantity, and guides the selection of attended locations, based on the spatial distribution of saliency region of the image in relation to its Perceptual importance. Results shown indicate that the calculated Saliency Maps correlate well with human perception of visually important regions.

Multi-Object Detection Using Image Segmentation and Salient Points (영상 분할 및 주요 특징 점을 이용한 다중 객체 검출)

  • Lee, Jeong-Ho;Kim, Ji-Hun;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.2
    • /
    • pp.48-55
    • /
    • 2008
  • In this paper we propose a novel method for image retrieval system using image segmentation and salient points. The proposed method consists of four steps. In the first step, images are segmented into several regions by JSEG algorithm. In the second step, for the segmented regions, dominant colors and the corresponding color histogram are constructed. By using dominant colors and color histogram, we identify candidate regions where objects may exist. In the third step, real object regions are detected from candidate regions by SIFT matching. In the final step, we measure the similarity between the query image and DB image by using the color correlogram technique. Color correlogram is computed in the query image and object region of DB image. By experimental results, it has been shown that the proposed method detects multi-object very well and it provides better retrieval performance compared with object-based retrieval systems.

Video Summarization Using Importance-based Fuzzy One-Class Support Vector Machine (중요도 기반 퍼지 원 클래스 서포트 벡터 머신을 이용한 비디오 요약 기술)

  • Kim, Ki-Joo;Choi, Young-Sik
    • Journal of Internet Computing and Services
    • /
    • v.12 no.5
    • /
    • pp.87-100
    • /
    • 2011
  • In this paper, we address a video summarization task as generating both visually salient and semantically important video segments. In order to find salient data points, one can use the OC-SVM (One-class Support Vector Machine), which is well known for novelty detection problems. It is, however, hard to incorporate into the OC-SVM process the importance measure of data points, which is crucial for video summarization. In order to integrate the importance of each point in the OC-SVM process, we propose a fuzzy version of OC-SVM. The Importance-based Fuzzy OC-SVM weights data points according to the importance measure of the video segments and then estimates the support of a distribution of the weighted feature vectors. The estimated support vectors form the descriptive segments that best delineate the underlying video content in terms of the importance and salience of video segments. We demonstrate the performance of our algorithm on several synthesized data sets and different types of videos in order to show the efficacy of the proposed algorithm. Experimental results showed that our approach outperformed the well known traditional method.

A Saliency-Based Focusing Region Selection Method for Robust Auto-Focusing

  • Jeon, Jaehwan;Cho, Changhun;Paik, Joonki
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.133-142
    • /
    • 2012
  • This paper presents a salient region detection algorithm for auto-focusing based on the characteristics of a human's visual attention. To describe the saliency at the local, regional, and global levels, this paper proposes a set of novel features including multi-scale local contrast, variance, center-surround entropy, and closeness to the center. Those features are then prioritized to produce a saliency map. The major advantage of the proposed approach is twofold; i) robustness to changes in focus and ii) low computational complexity. The experimental results showed that the proposed method outperforms the existing low-level feature-based methods in the sense of both robustness and accuracy for auto-focusing.

  • PDF

Moving Vehicle Segmentation from Plane Constraint

  • Kang, Dong-Joong;Ha, Jong-Eun;Kim, Jin-Young;Kim, Min-Sung;Lho, Tae-Jung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2393-2396
    • /
    • 2005
  • We present a method to detect on-road vehicle using geometric invariant of feature points on side planes of the vehicle. The vehicles are assumed into a set of planes and the invariant from motion information of features on the plane segments the plane from the theory that a geometric invariant value defined by five points on a plane is preserved under a projective transform. Harris corners as a salient image point are used to give motion information with the normalized correlation centered at these points. We define a probabilistic criterion to test the similarity of invariant values between sequential frames. Experimental results using images of real road scenes are presented.

  • PDF

Flashover Prediction of Polymeric Insulators Using PD Signal Time-Frequency Analysis and BPA Neural Network Technique

  • Narayanan, V. Jayaprakash;Karthik, B.;Chandrasekar, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1375-1384
    • /
    • 2014
  • Flashover of power transmission line insulators is a major threat to the reliable operation of power system. This paper deals with the flashover prediction of polymeric insulators used in power transmission line applications using the novel condition monitoring technique developed by PD signal time-frequency map and neural network technique. Laboratory experiments on polymeric insulators were carried out as per IEC 60507 under AC voltage, at different humidity and contamination levels using NaCl as a contaminant. Partial discharge signals were acquired using advanced ultra wide band detection system. Salient features from the Time-Frequency map and PRPD pattern at different pollution levels were extracted. The flashover prediction of polymeric insulators was automated using artificial neural network (ANN) with back propagation algorithm (BPA). From the results, it can be speculated that PD signal feature extraction along with back propagation classification is a well suited technique to predict flashover of polymeric insulators.

Real-Time Multiple Face Detection Using Active illumination (능동적 조명을 이용한 실시간 복합 얼굴 검출)

  • 한준희;심재창;설증보;나상동;배철수
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.155-160
    • /
    • 2003
  • This paper presents a multiple face detector based on a robust pupil detection technique. The pupil detector uses active illumination that exploits the retro-reflectivity property of eyes to facilitate detection. The detection range of this method is appropriate for interactive desktop and kiosk applications. Once the location of the pupil candidates are computed, the candidates are filtered and grouped into pairs that correspond to faces using heuristic rules. To demonstrate the robustness of the face detection technique, a dual mode face tracker was developed, which is initialized with the most salient detected face. Recursive estimators are used to guarantee the stability of the process and combine the measurements from the multi-face detector and a feature correlation tracker. The estimated position of the face is used to control a pan-tilt servo mechanism in real-time, that moves the camera to keep the tracked face always centered in the image.

  • PDF