• 제목/요약/키워드: safety-critical

검색결과 2,174건 처리시간 0.038초

공간비에 의한 재성형 이암 풍화토의 상태경계면 변화 (Variation of State Boundary Surface of Remolded Weathered Mudstone soil by spacing ratio)

  • 김기영;전제성;이종욱;김재홍
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2008년도 춘계 학술발표회 초청강연 및 논문집
    • /
    • pp.1095-1099
    • /
    • 2008
  • Critical state theory involves two state boundary surface. One is Roscoe surface and the other is Hvorslev surface. The shape of these boundary surface was changed because of several parameters : Critical state constant(M), spacing ratio (r) and critical state pore pressure coefficient($\wedge$). As these constants make difference to each model and the way of solution, they may affect the shape of state boundary surface. Specially, spacing ratio (r) is important. On this study, triaxial compression test was performed using remolded weathered mudstone soil and investigated variation of state boundary surface because of spacing ratio. In the results of prediction, critical state point was located highly and the shape of boundary surface was changed more tightly curve as decreasing spacing ratio.

  • PDF

지반의 한계변형률을 이용한 터널수치해석 및 현장 적용성 연구 (A Study on Numerical Analyses and Field Application for Tunneling Using the Critical Strain in the Ground)

  • 박시현
    • 지질공학
    • /
    • 제18권3호
    • /
    • pp.339-347
    • /
    • 2008
  • 본 연구는 지반의 한계변형률을 활용하여 터널의 정량적 안정성 평가를 수행한 것이다. 한계변형률은 지반재료에 대한 새로운 역학적 물성치의 하나이다. 한계변형률 개념은 터널굴착 현장에서 계측된 변위정보와 함께 굴착지반의 변형에 대한 한계치 설정에 활용될 수 있다. 이러한 목적을 위해서 본 연구에서는 한계변형률 개념을 터널 안정성 평가에 활용한 것이다. 먼저, 수치해석 프로그램을 이용하여 터널굴착시 발생한 변위를 역해석 기법에 의해 지반변형률로 산정한 후, 이를 한계변형률 개념에 의해 터널 안정성을 평가하였다. 이어서, 터널시공현장에서 계측된 변위정보를 활용하여 실증적으로 한계변형률 관점에서 터널안정성 평가를 수행하였다. 본 연구를 통해 한계변형률 개념에 의해 터널의 안정성을 정량적으로 평가하는 것이 가능한 것을 확인하였다.

정형성 기반 국방 안전/보안필수 소프트웨어 개발 및 인증 기준 - 안전/보안필수 소프트웨어 인증 프로세스에 대한 정형기법 적용 방안 연구 - (Formalism-Based Defense Safety/Security-Critical Software Development & Certification Criteria - Application of Formal Methods to Safety/Security-Critical Software Certification Process Activities -)

  • 김창진;최진영
    • 한국군사과학기술학회지
    • /
    • 제10권1호
    • /
    • pp.55-69
    • /
    • 2007
  • The paper provides the approach to apply formal methods to the development and certification criteria of defense safety/security-critical software. RTCA/DO-178B is recognized as a do facto international standard for airworthiness certification but lack of concrete activities and vagueness of verification/certification criteria have been criticized. In the case of MoD Def Stan 00-55, the guidelines based on formal methods are concrete enough and structured for the defense safety-related software. Also Common Criteria Evaluation Assurance Level includes the strict requirements of formal methods for the certification of high-level security software. By analyzing the problems of DO-178B and comparing it with MoD Def Stan 00-55 and Common Criteria, we identity the important issues In safety and security space. And considering the identified issues, we carry out merging of DO-178B and CC EAL7 on the basis of formal methods. Also the actual case studies for formal methods applications are shown with respect to the verification and reuse of software components.

Safety Critical 시스템의 센서 결함 허용을 위한 Kalman Hybrid Redundancy 개발 (Development of Kalman Hybrid Redundancy for Sensor Fault-Tolerant of Safety Critical System)

  • 김만호;이석;이경창
    • 제어로봇시스템학회논문지
    • /
    • 제14권11호
    • /
    • pp.1180-1188
    • /
    • 2008
  • As many systems depend on electronics, concern for fault tolerance is growing rapidly in the safety critical system such as intelligent vehicle. In order to make system fault tolerant, there has been a body of research mainly from aerospace field including predictive hybrid redundancy by Lee. Although the predictive hybrid redundancy has the fault tolerant mechanism to satisfy the fault tolerant requirement of safety crucial system such as x-by-wire system, it suffers form the variability of prediction performance according to the input feature of system. As an alternative to the prediction method of predictive hybrid redundancy for robust fault tolerant, Kalman prediction has attracted some attention because of its well-known and often-used with its structure called Kalman hybrid redundancy. In addition, several numerical simulation results are given where the Kalman hybrid redundancy outperforms with predictive smoothing voter.

Performance evaluation of safety-critical systems of nuclear power plant systems

  • Kumar, Pramod;Singh, Lalit Kumar;Kumar, Chiranjeev
    • Nuclear Engineering and Technology
    • /
    • 제52권3호
    • /
    • pp.560-567
    • /
    • 2020
  • The complexity of safety critical systems of Nuclear Power Plant continues to increase rapidly due its transition from analog to digital systems. It has thus become progressively more imperative to model these systems prior to their implementation in order to meet the high performance, safety and reliability requirements. Timed Petri Nets (TPNs) have been widely used to model such systems for non-functional analysis. The paper presents a novel methodology for the analysis of the performance metrics using PN modeling. The paper uses the isomorphism property of the TPNs and the Markov chains for the performance analysis of the safety critical systems. The presented methodology has been validated on a Shutdown System of a Nuclear Power Plant.

철도 안전필수 소프트웨어를 위한 안전기준 도출 (Development of Safety Criteria for Railway Safety Critical Software)

  • 정의진;신경호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.1201-1202
    • /
    • 2007
  • Safety critical systems are those in which a failure can have serious and irreversible consequences. Nowadays digital technology has been rapidly applied to critical system such as railways, airplanes, nuclear power plants, vehicles. The main difference between analog system and digital system is that the software is the key component of the digital system. The digital system performs more varying and highly complex functions efficiently compared to the existing analog system because software can be flexibly designed and implemented. The flexible design make it difficult to predict the software failures. This paper reviews safety standard and criteria for safety critical system such as railway system and introduces the framework for the software lifecycle. The licensing procedure for the railway software is also reviewed.

  • PDF

CASE Tool을 이용한 Safety Critical 소프트웨어 개발 방법론

  • 김장열;권기춘
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1996년도 춘계학술발표회논문집(1)
    • /
    • pp.446-450
    • /
    • 1996
  • 본 논문은 Computer Aided Software Engineering (CASE) Tool을 이용할 경우의 Safety Critical 소프트웨어 개발 방법론인 구조적 분석 및 구조적 설계 모델링 방법론을 Teamwork CASE tool의 예를 중심으로 제안하고자 한다. 제시된 사례는 NSIS(Nuclear Safety Information System)으로서 Essential Modeling과 Implementation Modeling을 제시하였는데 Teamwork CASE 환경하에서의 분석 및 설계 절차, 지침 등을 제시하였다. Essential Modeling에서는 NSIS의 MMIS 분석범위 및 External Interface를 제시하는 환경 모델(Environmental Model)과 MMIS의 기능을 계층구조적으로 분할하는 행위모델링(Behaviroal Modeling)을 각각 Context Diagram과 Data Flow Diagram (DFD)으로 그 과정을 제시하였다. Implementation Modeling에서는 Essential Modeling으로 부터 나온 결과물을 토대로 Boss Rule, Transform Rule과 Transaction Rule 등을 거쳐 NSIS MMIS의 설계 근간이 되는 Structured Chart(SC)를 제시하였다. 본 논문에서 제시된 모델링 방법론을 통하여 Safety Critical 소프트웨어 개발시 Teamwork CASE Tool을 활용할 수 있음과 동시에 분실 및 설계의 일치성을 통하여 Safety Critical 소프트웨어의 안전성 확립과 품질보증 목표에 기여할 수 있다.

  • PDF

도로터널 화재시 경사도에 따른 임계풍속산정에 관한 실험적 연구 (Experimental Study on Calculation of Critical Velocity in Accordance with Gradient of a Road Tunnel at Fire)

  • 김종윤;서태범;이동호;임경범;유지오
    • 한국안전학회지
    • /
    • 제21권5호
    • /
    • pp.1-5
    • /
    • 2006
  • This study provides a basic data necessary to design a facility of smoke management after calculating the critical velocity of the gradient scale model tunnel and reviewing its adequacy to establish an optimum disaster prevention system for a road tunnel at fire. The experiment is carried out by using Froude scaling to a scale model which is about 1/29 as big as the real tunnel, and its critical velocity calculation is calculated to the 0-2% gradient of the tunnel. The result shows that the higher the gradient is, the stronger the critical velocity, but that it doesn't affect the critical velocity so much when the gradient is less 2%. In addition, this result is studied in comparison with the results done by other researchers to review the adequacy of the critical velocity.

A Quantitative Study on Important Factors of the PSA of Safety-Critical Digital Systems

  • Kang, Hyun-Gook;Taeyong Sung
    • Nuclear Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.596-604
    • /
    • 2001
  • This paper quantitatively presents the effects of important factors of the probabilistic safety assessment (PSA) of safety-critical digital systems. The result which is quantified using fault tree analysis methodology shows that these factors remarkably affect the system safety. In this paper we list the factors which should be represented by the model for PSA. Based on the PSA experience, we select three important factors which are expected to dominate the system unavailability. They are the avoidance of common cause failure, the coverage of fault tolerant mechanisms and software failure probability. We Quantitatively demonstrate the effect of these three factors. The broader usage of digital equipment in nuclear power plants gives rise to the safety problems. Even though conventional PSA methods are immature for applying to microprocessor-based digital systems, practical needs force us to apply it because the result of PSA plays an important role in proving the safety of a designed system. We expect the analysis result to provide valuable feedback to the designers of digital safety- critical systems.

  • PDF