• Title/Summary/Keyword: safety rate

Search Result 5,194, Processing Time 0.033 seconds

The Type of Payment and Working Conditions

  • Rhee, Kyung Yong;Kim, Young Sun;Cho, Yoon Ho
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.289-294
    • /
    • 2015
  • Background: The type of payment is one of the important factors that has an effect on the health of employees, as a basic working condition. In the conventional research field of occupational safety and health, only the physical, chemical, biological, and ergonomic factors are treated as the main hazardous factors. Managerial factors and basic working conditions such as working hours and the type of payment are neglected. This paper aimed to investigate the association of the type of payment and the exposure to the various hazardous factors as an heuristic study. Methods: The third Korean Working Conditions Survey (KWCS) by the Occupational Safety and Health Research Institute in 2011 was used for this study. Among the total sample of 50,032 economically active persons, 34,788 employees were considered for analysis. This study examined the relation between the three types of payment such as basic fixed salary and wage, piece rate, and extra payment for bad and dangerous working conditions and exposure to hazardous factors like vibration, noise, temperature, chemical contact, and working at very high speeds. Multivariate regression analysis was used to measure the effect of the type of payment on working hours exposed to hazards. Results: The result showed that the proportion of employees with a basic fixed salary was 94.5%, the proportion with piece rates was 38.6%, and the proportion who received extra payment for hazardous working conditions was 11.7%. Conclusion: The piece rate was associated with exposure to working with tight deadlines and stressful jobs. This study had some limitations because KWCS was a cross-sectional survey.

A Study on the Improving Safety Management by analyzing Safety Consciousness of Construction Labors (건설근로자 안전의식 분석을 통한 안전관리 개선에 관한 연구)

  • Lee, Hyun-Chul;Yeo, Sa-Ku;Go, Seong-Seok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.3
    • /
    • pp.51-58
    • /
    • 2009
  • The intention of this study is to analyze safety consciousness of construction labors in Gawang-Ju region. According to Korea Occupational Safety & Health Agency, the rate of disaster in construction industry is very high comparing with other fields. Most of all, the consciousness of construction labors is very important because accidents are caused from it mainly. For this reason, it is necessary to recognize safety consciousness of labors who directly work in construction field. For decreasing the rate of disaster in construction, I examined and analyzed safety consciousness of construction labors and then, groped improvement of safety activity. Finally, this study deducted improvement of safety activities and management.

A Study on safety improvement of Domestic Construction Industry subject to Design for Safety review (설계안전성 검토 시행에 따른 국내 건설업 주체의 안전개선 연구)

  • Ji, Kyung-Hwan;Choi, Byung-Jung
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.4
    • /
    • pp.63-76
    • /
    • 2017
  • This thesis provides background information on DFS carried out by the government in an effort to reduce the accident rate, cases of DFS in other advanced countries to study their risk detection, risk assessment, risk control measures, and cases in which application of DFS during the designing phase succesfully led to reduction of the accident rate. Till now, the focus has been on incident responses after the occurance of accidents, it describes the importance of considering safety during the desining process through safety results and cases.

Analyzing Construction Safety Planning Tasks for Performance Improvement (건축공사 안전관리자 계획업무의 중요도 분석에 관한 연구)

  • Park, Jae-Woo;Kang, Sang-Hun;Sohn, Sung Geun;Kim, Dae Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.193-194
    • /
    • 2019
  • The main purpose of the study is to reduce the accident death rate in the construction industry. To achieve this goal, the safety planning tasks were analyzed and assessed in terms of the importance and preventive effects of the tasks. Through the extensive literature reviews, the safety planning tasks were identified and reviewed by safety managers. Based on the data collected, a survey was conducted in order to receive responses by experts with knowledge on the effects and importance of preventive measures for safety. Then, the IPA method was employed to identify the safety manager's tasks that have an effect on performance indicators. The effective safety tasks identified are expected to have a critical role in reducing the accident death rate in the construction industry.

  • PDF

Derivation of Key Safety Management Factors by Construction Process through Cross-Tabulation Analysis between Accident Types and Objects (건설공사 공종별 사고유형 및 사고객체 교차분석을 통한 중점안전관리항목 도출)

  • Yoo, Nayeong;Kim, Harim;Lee, Chanwoo;Cho, Hunhee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.127-128
    • /
    • 2022
  • The construction industry has a higher disaster rate than other industries, so safety education and management are highly important. In order to reduce the construction accident rate, it is necessary to study the key safety management factors reflecting the characteristics of the construction industry, where there are differences in processes and manpower input for each process, and a small number of managers. Therefore, in this study, key safety management factors for each Process of construction were derived through cross-analysis between safety accident types and accident occurrence objects through disaster case data. The extracted key safety management factors are expected to provide useful information for safety education and supervision of construction sites.

  • PDF

Hydraulic Compressor Safety Test for Hydrogen Stations (수소충전소용 유압식 압축기 안전성 시험에 관한 연구)

  • Seong, Hye-Jin;Hwang, Bom-Chan;Choi, Sung-Joon;Kim, Young-Kyu;Cho, Sung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.11
    • /
    • pp.8-15
    • /
    • 2020
  • The government has announced its Hydrogen Economy Roadmap to strengthen global competitiveness on the hydrogen economy by focusing on hydrogen fuel cell electric vehicles and fuel cells. In this regard, the interest on the economics and safety of the infrastructure of hydrogen stations has also increased. In this study, a test bed similar to an actual hydrogen charging facility was built, and a prototype of a piston-type compressor was modeled. In this model, the piston was hydraulically compressed to progressively test leakage, leakage rate, and durability and to check for any malfunction. Moreover, the leakage rate, cylinder leak performance, and compressor operation durability were evaluated for safety; it was confirmed that there were no abnormalities. Nevertheless, an investigation of the long-term use and operating pressure of the compressor is necessary to verify the safety of developing a100-MPa domestic compressor in the future.

A Numerical Study on Methane-Air Counterflow Diffusion Flames Part 2. Global Strain Rate

  • Park, Woe Chul
    • International Journal of Safety
    • /
    • v.2 no.1
    • /
    • pp.12-16
    • /
    • 2003
  • In Part 1, the flame structure of the counterflow nonpremixed flames computed by using Fire Dynamics Simulator was compared with that of OPPDIF for different concentrations of methane in the fuel stream. In this study, comparisons were made for the global strain rate that is an important parameter for diffusion flames for further evaluation of FDS. At each of the three fuel concentrations, $20% CH_4+ 80% N_2, 50% CH_4 + 50% N_2, 90% CH_4 + 10% N_2$ in the fuel stream, the temperature and axial velocity profiles were investigated for the global strain rate in the range from 20 to $100s^{-1}$. Changes in flame thickness and radius were also compared with OPPDIF. There was good agreement in the temperature and axial velocity profiles between the axisymmetric simulations and the one-dimensional computations except for the regions where the flame temperature reach its peak and the axial velocity rapidly changes. The simulations of the axisymmetric flames with FDS showed that the flame thickness decreases and the flame radius increases with increasing global strain rate.

Effect of Chip Breaker Shape and Cutting Condition on the Chip Breaking and Surface Roughness (칩브레이커의 형상과 절삭조건이 칩 절단과 표면거칠기에 미치는 영향)

  • 나기철;태순호;이병곤
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.4
    • /
    • pp.17-28
    • /
    • 1994
  • Chip breaking is important in lathe work for maintaining good surface of the products and safety of operator. The purpose of this study is to investigate the performance of chip breaking and chip shape resulted from the carbide inserts with grooved type and obstruction type chip breaker. Experiments have been performed under the following cutting conditions, (1) constant cutting speed with variable depth of cut and feed rate, (2) constant depth of cut with variable cutting speed and feed rate. Also, the flying distance of chip and it's distribution have been investigated. As a results, good performance of chip breaking can be obtained for small radius of curvature and land width of grooved type chip breaker. And the thickness of chip increase with the increase of feed rate and decrease of cutting speed, and the chip breaking becomes easier with the increase of chip thickness due to the large deformation rate. Obstraction type chip breaker shows better performance of surface roughness than the grooved type. The flying distance of the chips over 90% are less than 1 meter, and the distance decreases as the feed rate decreases.

  • PDF

Nuclear Safety Analysis with the Performance of NPPs (원전운전지표를 이용한 원전의 안전성 변화 분석)

  • Park, Wooyoung
    • Environmental and Resource Economics Review
    • /
    • v.26 no.2
    • /
    • pp.139-172
    • /
    • 2017
  • Nuclear safety measures such as safety technology, culture, and regulation affects nuclear performances. This paper analyzes the change of nuclear performance by considering nuclear safety measures. Nuclear performance and technical data ranging 1970 to 2015 are collected from the Power Reactor Information System (PRIS) of IAEA. The result of panel regression analysis shows that overall engineering level, maintenance engineering and productivity decrease the forced loss rate (FLR). FLR structurally increase after Chernobyl accident in 1986 whereas after TMI and Fukushima accidents FLR didn't show any significant changes. The structural increase of FLR after Chernobyl are likely to result from the efforts of international communities for nuclear safety culture which makes nuclear operating company pay more opportunity cost to achieve nuclear safety.

Safety Analysis and Safety Measures of 22900/1200V Oil Immersed Transformer at Power Supply System (전철 급전시스템의 22900/1200V 유입변압기 안전성 분석)

  • Lee, Jong-Su;Lee, Jongwoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.9
    • /
    • pp.1335-1342
    • /
    • 2013
  • Subway is electrified railway system nowadays, in which liquid dielectric transformers have been widely used, though mold type transformers are replacing it. The transformers supplies large electric power and have innate hazards causing accidents under operation. A number of researcher have carried out on failures of it and have oriented to identify transformer's failure causes and how to maintain it healthy state. The transformer failures can cause serious accidents which can provoke economic loss and leads persons to kill. In this paper, we carried out a safety activity to reveal hazards and to estimate risk of subway liquid dielectric transformers using FMEA, HAZOP and What-if methods. In case of installing safety devices in oil immersed transformer, we tried to evaluate an effect on a subsystem's failure rate. We proposed how to design subsystem failure rate and safety device failure rates.