• Title/Summary/Keyword: safety margins

Search Result 93, Processing Time 0.024 seconds

A Study on the Development for Business Innovation Master Plan (철도경영혁신 마스터플랜 수립 방법론 연구)

  • Kim, Young-Woo;Ryu, KEun, Ok
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.516-521
    • /
    • 2005
  • The challenge for companies is to bring to the market a stream of new and improved, added-value, products and services that enable the business to achieve higher margins and thus profits to re-invest in the business. Especially in these days, railway industry has met the competitive challenges of new transportation technologies or the demands of new passenger transportation needs with a spirit of innovation and change that has reshaped the business several times over the course of the century. Like other railway organization, KR-network business is committed to optimising long term performance for its clients in terms of safety, reliability and profitability.

  • PDF

Ozone disinfection criteria for contactor design (오존접촉조 설계를 위한 소독 기준)

  • Dumeau C;Boisdon V
    • 수도
    • /
    • v.24 no.6 s.87
    • /
    • pp.23-31
    • /
    • 1997
  • Ozonation is an effective process in providing microbiologically safe drinking water. The operation of the ozonation stage is often based on disinfection criteria which include security factors, such as the CT criterion. This type of ozonation management, which mat include large safety margins, will no longer be possible, since formation of ozonation byproducts has to be avoided. In order to reduce the security factor, a computerized tool to predict with more accuracy inactivation of micro-organisms in the ozonation process has been developed.

  • PDF

Giant basal cell carcinoma of the left lateral neck

  • Baik, Bongsoo;Park, Sulki;Ji, Soyoung;Kim, Sunyoung
    • Archives of Craniofacial Surgery
    • /
    • v.22 no.3
    • /
    • pp.173-176
    • /
    • 2021
  • Basal cell carcinoma is a malignant epithelial neoplasm of the skin and the most common human skin cancer. It is generally associated with a good prognosis. In this case report, a giant basal cell carcinoma of the nodulo-ulcerative type showing wide ulceration with marginal multiple small nodules, is presented. It was trapezoidal in shape, having dimensions of 7 cm at the greatest basal width, 6 cm vertically with different anterior and posterior margin dimensions, and 5 cm horizontally at the top margin. After wide excision of the lesion including 5-10 mm safety margins, the wound was reconstructed with a local skin flap and split-thickness skin graft. The reconstructed wound healed well without recurrence for 1 year.

ON-LINE CALCULATION OF 3-D POWER DISTRIBUTION

  • Park, Y. H.;W. K. In;Park, J. R.;Lee, C. C.;G. S. Auh
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.459-464
    • /
    • 1996
  • The 3-D power distribution synthesis scheme was implemented in Totally Integrated Core Operation Monitoring System (TICOMS), which is under development as the next generation core monitoring system. The on-line 3-D core power distribution obtained from the measured fixed incore detector readings is used to construct the hot pin power as well as the core average axial power distribution. The core average axial power distribution and the hot pin power of TICOMS were compared with those of the current digital on-line core monitoring system, COLSS, which construct the core average axial power distribution and the pseudo hot pin power. The comparison shows that TICOMS results in the slightly more accurate core average axial power distribution and the less conservative hot pin power. Therefore, these results increased the core operating margins. In addition, the on-line 3-D power distribution is expected to be very useful for the core operation in the future.

  • PDF

INHERENT SAFETY ANALYSIS OF THE KALIMER UNDER A LOFA WITH A REDUCED PRIMARY PUMP HALVING TIME

  • Chang, W.P.;Kwon, Y.M.;Jeong, H.Y.;Suk, S.D.;Lee, Y.B.
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.63-74
    • /
    • 2011
  • The 600 MWe, pool-type, sodium-cooled, metallic fuel loaded KALIMER-600 (Korea Advanced LiquId MEtal Reactor, 600 MWe) has been conceptually designed with an emphasis on safety by self-regulating (inherent/intrinsic) negative reactivity feedback in the core. Its inherent safety under the ATWS (Anticipated Transient Without Scram) events was demonstrated in an earlier study. Initiating events of an HCDA (Hypothetical Core Disruptive Accident), however, also need to be analyzed for assessment of the margins in the current design. In this study, a hypothetical triple-fault accident, ULOF (Unprotected Loss Of Flow) with a reduced pump halving time, is investigated as an initiator of a core disruptive accident. A ULOF with insufficient primary pump inertia may cause core sodium boiling due to a power-to-flow mismatch. If the positive sodium reactivity resulting from this boiling is not compensated for by other intrinsic negative reactivity feedbacks, the resulting core power burst would challenge the fuel integrity. The present study focuses on determination of the limit of the pump inertia for assuring inherent reactivity feedback and behavior of the core after sodium boiling as well. Transient analyses are performed with the safety analysis code SSC-K, which now incorporates a new sodium boiling model. The results show that a halving time of more than 6.0 s does not allow sodium boiling even with very conservative assumptions. Boiling takes place for a halving time of 1.8 s, and its behavior can be predicted reasonably by the SSC-K.

Theoretical analysis of erosion degradation and safety assessment of submarine shield tunnel segment based on ion erosion

  • Xiaohan Zhou;Yangyang Yang;Zhongping Yang;Sijin Liu;Hao Wang;Weifeng Zhou
    • Geomechanics and Engineering
    • /
    • v.37 no.6
    • /
    • pp.599-614
    • /
    • 2024
  • To evaluate the safety status of deteriorated segments in a submarine shield tunnel during its service life, a seepage model was established based on a cross-sea shield tunnel project. This model was used to study the migration patterns of erosive ions within the shield segments. Based on these laws, the degree of deterioration of the segments was determined. Using the derived analytical solution, the internal forces within the segments were calculated. Lastly, by applying the formula for calculating safety factors, the variation trends in the safety factors of segments with different degrees of deterioration were obtained. The findings demonstrate that corrosive seawater presents the evolution characteristics of continuous seepage from the outside to the inside of the tunnel. The nearby seepage field shows locally concentrated characteristics when there is leakage at the joint, which causes the seepage field's depth and scope to significantly increase. The chlorine ion content decreases gradually with the increase of the distance from the outer surface of the tunnel. The penetration of erosion ions in the segment is facilitated by the presence of water pressure. The ion content of the entire ring segment lining structure is related in the following order: vault < haunch < springing. The difference in the segment's rate of increase in chlorine ion content decreases as service time increases. Based on the analytical solution calculation, the segment's safety factor drops more when the joint leaks than when its intact, and the change rate between the two states exhibits a general downward trend. The safety factor shows a similar change rule at different water depths and continuously decreases at the same segment position as the water depth increases. The three phases of "sudden drop-rise-stability" are represented by a "spoon-shaped" change rule on the safety factor's change curve. The issue of the poor applicability of indicators in earlier studies is resolved by the analytical solution, which only requires determining the loss degree of the segment lining's effective bearing thickness to calculate the safety factor of any cross-section of the shield tunnel. The analytical solution's computation results, however, have some safety margins and are cautious. The process of establishing the evaluation model indicates that the secondary lining made of molded concrete can also have its safety status assessed using the analytical solution. It is very important for the safe operation of the tunnel and the safety of people's property and has a wide range of applications.

Leak Before Break Evaluation of Surge Line by Considering CPE under Beyond Design Basis Earthquake (설계초과지진시 CPE를 고려한 밀림관 파단전누설 평가)

  • Seung Hyun Kim;Youn Jung Kim;Han-geol Lee;Sun Yeh Kang
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.18 no.1
    • /
    • pp.19-25
    • /
    • 2022
  • Nuclear Power Plants (NPP) should be designed to have sufficient safety margins and to ensure seismic safety against earthquake that may occur during the plant life time. After the 9.12 Gyeongju earthquake accident, the structural integrity of nuclear power plants due to the beyond design basis earthquake is one of key safety issues. Accordingly, it is necessary to conduct structural integrity evaluations for domestic NPPs under beyond design basis earthquake. In this study, the Level 3 LBB (Leak Before Break) evaluation was performed by considering the beyond design basis earthquake for the surge line of a OPR1000 plant of which design basis earthquake was set to be 0.2g. The beyond design basis earthquake corresponding to peak ground acceleration 0.4g at the maximum stress point of the surge line was considered. It was confirmed that the moment behaviors of the hot leg and pressurized surge nozzle were lower than the maximum allowable loading in moment-rotation curve. It was also confirmed that the LBB margin could be secured by comparing the LBB margin through the Level 2 method. It was judged that the margin was secured by reducing the load generated through the compliance of the pipe.

Comparison of Safety Margin of Shallow Foundation on Weathered Soil Layer According to Design Methods (설계법에 따른 풍화토 지반 얕은기초의 안전여유 비교)

  • Kim, Donggun;Hwang, Huiseok;Yoo, Namjae
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.12
    • /
    • pp.55-64
    • /
    • 2016
  • In this paper bearing capacity and safety margin of shallow foundation on weathered soil ground against shear failure by using current design method of allowable stress design (ASD), load resistance factor design (LRFD) based on reliability analysis and partial safety factor design (PSFD) in Eurocode were estimated and compared to each other. Results of the plate loading test used in construction and design were collected and analysis of probability statistics on soil parameters affecting the bearing capacity of shallow foundation was performed to quantify the uncertainty of them and to investigate the resistance bias factor and covalence of ultimate bearing capacity. For the typical sections of shallow foundation in domestic field as examples, reliability index was obtained by reliability analysis (FORM) and the sensitivity analysis on soil parameters of probability variables was performed to investigate the effect of probability variable on shear failure. From stability analysis for these sections by ASD, LRFD with the target reiability index corresponding to the safety factor used in ASD and PSDF, safety margins were estimated respectively and compared.

Power upgrading of WWR-S research reactor using plate-type fuel elements part I: Steady-state thermal-hydraulic analysis (forced convection cooling mode)

  • Alyan, Adel;El-Koliel, Moustafa S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1417-1428
    • /
    • 2020
  • The design of a nuclear reactor core requires basic thermal-hydraulic information concerning the heat transfer regime at which onset of nucleate boiling (ONB) will occur, the pressure drop and flow rate through the reactor core, the temperature and power distributions in the reactor core, the departure from nucleate boiling (DNB), the condition for onset of flow instability (OFI), in addition to, the critical velocity beyond which the fuel elements will collapse. These values depend on coolant velocity, fuel element geometry, inlet temperature, flow direction and water column above the top of the reactor core. Enough safety margins to ONB, DNB and OFI must-emphasized. A heat transfer package is used for calculating convection heat transfer coefficient in single phase turbulent, transition and laminar regimes. The main objective of this paper is to study the possibility of power upgrading of WWR-S research reactor from 2 to 10 MWth. This study presents a one-dimensional mathematical model (axial direction) for steady-state thermal-hydraulic design and analysis of the upgraded WWR-S reactor in which two types of plate fuel elements are employed. FOR-CONV computer program is developed for the needs of the power upgrading of WWR-S reactor up to 10 MWth.

Numerical Fracture Mechanics Evaluation on Surface Cracks in a Spherical Oxygen Holder (구형 산소용기 내 표면균열에 대한 수치파괴역학 평가)

  • Cho, Doo-Ho;Kim, Jong-Min;Chang, Yoon-Suk;Choi, Jae-Boong;Kim, Young-Jin;Han, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1187-1194
    • /
    • 2009
  • During the last decade, possibility of flaw occurrences has been rapidly increased world-widely as the increase of operating times of petro-chemical facilities. For instance, from a recent in-service inspection, three different sized surface cracks were detected in welding parts of a spherical oxygen holder in Korea. While API579 code provides corresponding engineering assessment procedures to determine crack driving forces, in the present work, numerical analyses are carried out for the cracked oxygen holder to investigate effects of complex geometry, analysis model and residual stress. With regard to the detailed finite element analysis, stress intensity factors are determined from both the full three-dimensional model and equivalent plate model. Also, as an alternative, stress intensity factors are calculated for equivalent plate model by employing the noted influence stress function technique. Finally, parametric structural integrity evaluation of the cracked oxygen holder is conducted in use of failure assessment diagram method, J/T method and DPFAD method. Effects of the geometry and so forth are examined and key findings from the simulations are fully discussed, which enables to determine practical safety margins of spherical components containing a defect.