• Title/Summary/Keyword: safety factor and displacement

Search Result 184, Processing Time 0.024 seconds

The Stability of Excavated Soft Ground Supported by Sheet-pile Walls (강널말뚝 흙막이벽으로 시공된 굴착연약지반의 안정성)

  • Hong Won-Pyo;Kim Dong-Uk;Song Young-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.1
    • /
    • pp.5-14
    • /
    • 2005
  • Based on the field measuring data obtained from excavation sections in Inchon International Airport project, the relationships between the horizontal displacement of sheet-pile walls and the deformations of soft ground around the excavation were investigated. The horizontal displacements of walls according to supporting method occur, and the displacements were found to become larger in the order of anchors, anchors with struts, and struts. The depths of maximum horizontal displacement are varied with supporting systems. If the stability number shows lower than ${\pi}$, the maximum horizontal displacement and the velocity of maximum horizontal displacement are respectively developed less than $1\%$ of excavation depth and 1mm/day. When the stability number shows lower than ${\pi}+2$, the maximum horizontal displacement and the velocity are respectively developed less than $2.5\%$ of excavation depth and 2mm/day. Also, when the stability number shows more than ${\pi}+2$, the maximum horizontal displacement and the velocity rapidly increase. Also, the maximum horizontal displacement is found to increase rapidly when N value is less than 10. The maximum horizontal displacement increases with decreasing the factor of safety against basal heave (Terzaghi, 1943), and the maximum horizontal displacement is found to increase rapidly when the factor of safety against basal heave is greater than 2.0. This value can be proposed as the criterion for the factor of safety against basal heave in Korea.

Selection of Sensing Members in a High-rise Building Structures using Displacement Participation Factors and Strain Energy Density (변위기여도 및 변형에너지밀도를 활용한 초고층 건물의 센싱 부재 선정)

  • Lee, Hong-Min;Park, Sung-Woo;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.349-354
    • /
    • 2009
  • To rationally secure and maintain the safety and serviceability of a high-rise building, monitoring of structural responses of members is necessary. As such health monitoring of large-scale building structures has received growing attention by researchers in recent years. However, due to a very large number of members complexity of structural responses of a high-rise building structure, practical difficulties exist in selection of structural members to be sensored for assessment of structural safety of a structure. In this paper, a selection technique for active members for safety monitoring of a high-rise building based on displacement participation factor and strain energy density of a member is investigated.

The Short-term Safety Factor Considering Passive Resistance Effect of Bar Anchor Based on Smart Construction (스마트 건설기반의 강봉앵커 수동저항 효과를 고려한 단기 안전율)

  • Donghyuk Lee;Duhyun Baek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.29-35
    • /
    • 2024
  • This is an analytical study to confirm the passive resistance effect before post-tensioning of steel bar anchors. When using a steel bar as a permanent anchor, if displacement occurs within the slope even before the head load is applied, the displacement is suppressed by the passive resistance caused by the interaction between the steel bar, grout, and surrounding soil. Accordingly, the shape of the failure surface and changes in the safety factor were examined using limit equilibrium analysis and finite element analysis targeting sites where steel bar anchors were actually applied. It was found that the safety factor of the slope reinforced with steel bar anchors is 2.02 using finite element analysis, which is about 5.9% smaller than 2.14 using limit equilibrium analysis. Also, the location of the failure surface was found to be deeper compared to the unreinforced slope. Likewise, the factor of safety has a 153% and 163% increase using finite element method and limit equilibrium analysis, respectively. In addition, the maximum displacement occurs in the lower unreinforced section within the slope, and the displacement is found to be reduced by 42 to 83% at the location where the steel bar anchors are installed.

Behavior and Safety Factor of Nailed-Soil Excavation Wall During Earthquake (지진시 Nailed-Soil 굴착벽체의 안전율과 거동특성)

  • Jo, Young-Jin;Kwak, Myeong-Chang;Choi, Se-Hyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.183-191
    • /
    • 2009
  • In this study, the behavior and safety factor of a nailed-soil excavation wall during earthquake is presented. The horizontal displacement, axial force, shear force, and moment of facing of a nailed-soil excavation wall subjected to static and seismic load are analyzed using time history analysis. The safety factor based on the strength reduction technique proposed by Dawson and Roth is used to calculate the safety factor of a nailed-soil excavation wall during earthquake. The safety factor by the proposed method is verified by comparing with those by other methods.

A Control Value Analysis on the Horizontal Displacement of Braced Excavation Walls Used In Korea (국내 적용되고 있는 흙막이구조물의 수평변위에 대한 관리기준치 분석)

  • Jeong, Sang-Guk;Yang, Jae-Hyouk;Kim, Ju-Hyun;Kim, Jong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.4
    • /
    • pp.169-176
    • /
    • 2001
  • This study aims to present a more reasonable control value than the exiting one by comparing and analyzing control values and field instrument8tion values of the whole excavation depth of the four case sites, using geometric averaging as a statistical method. The range of the study is confined to the horizontal displacement of braced excavation walls among a variety of items, prescribed in the control values by approximately of the allowable and design values, and by safety factors. As a result, it is desirable to revise 70, 90, and 100 percent of LEVEL I, II, and III, respectively. The horizontal displacement values of the allowable and design values approximations should change to 104, 133, and 148 percent of the allowable and design values, respectively. In addition, modifying the horizontal displacement control value of the braced excavation walls is not needed. The horizontal displacement value, presented in the control value as a safety factor, is now 1.19, as it has a slight difference from the present value.

  • PDF

A Consideration on Deformation Characteristics of Soil Nailed Retaining-Walls on Field Measurements (현장계측에 의한 쏘일네일링 보강벽체의 변형특성에 관한 고찰)

  • Yoon, Bae-Sic;Lee, Jong-Moon;Kang, In-Kyu;Kwon, Young-Ho;Kim, Hong-Taek
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.534-537
    • /
    • 2007
  • The soil nailing was generally using method in practical business, in application of the soil nailing, the analysis was primarily used to Beam-Colum Method, Finite Element Method and Limit Equilibrium Method. Beam-Colum Method and Finite Element Method were able to examine transformation but widely using Limit Equilibrium Method wasn't able to examine transformation and displacement Therefore, this study was focused on presenting stability in comparison with former study-results about horizontal displacement of the soil nailing retaining-walls satisfing a criterion safety factor of Limit Equilibrium. There were performing comparison field measurements and former study-results in first step.

  • PDF

Stability Analysis of Sheet Pile Reinforced with Strut (버팀대로 보강된 널말뚝의 안정해석)

  • Kim, Ji Hoon;Kang, Yea Mook;Chee, In Taeg
    • Korean Journal of Agricultural Science
    • /
    • v.24 no.2
    • /
    • pp.226-236
    • /
    • 1997
  • The results obtained by elasto-plastic analysis method about the displacement, deformation and stability on the soft ground excavation using sheet pile were summarized as follows ; 1. In the case of strut 1 step, the maximum wall displacement value in the first and the second excavation was small, but it increase remarkably after the third excavation and when the excavation depth was 8m, the point of maximum wall displacement was shown 0.75H~0.8H. 2. The value of safety factor(Fs) was increased with increasing of the penetration depth of sheet pile, cohesion and internal friction angle of ground. Safety factor was mostly effected by penetration depth of sheet pile and more effected by cohesion than internal friction angle of ground. 3. Since the deformation of sheet pile of this ground from the results of analysis and measurement increased remarkabaly after 6m excavation depth, it was desirable that the point of strut installation was GL-6m. 4. Safe excavation depth on ground by analysis considered penetration depth, cohesion and internal friction was shown at the table 3.

  • PDF

Comparison Analysis of Factor of Safety on Rock Slope in Boeun Region Using Limit Equilibrium Method and Distinct Element Method (한계평형법과 개별요소법을 이용한 보은지역 암반사면 안전율 비교해석)

  • 이지수;유광호;박혁진;민경덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.643-650
    • /
    • 2002
  • The large planar failure has occurred in a rock cut slope of highway construction site in Boeun. This area is considered as unstable since the discontinuities whose orientations are similar to the orientation of the failure plane, are observed in many areas. Therefore, several analysis techniques such as SMR, stereographic analysis, limit equilibrium, numerical analysis, which are commonly used in rock slope stability analysis, are adopted in this area. In order to analyze the stress redistribution and nonlinear displacement caused by cut, which are not obtained in limit equilibrium method, the UDEC and shear strength reduction technique were used in this study Then the factors of safety evaluated by shear strength reduction technique and limit equilibrium were compared. In addition, the factor of safety under fully saturated slope condition was calculated and subsequently, the effect of the reinforcement was evaluated.

  • PDF

Seismic Response Analysis of the Center-Core Rockfill Dam (중심코아령사력댐의 지진응답해석)

  • 오병현;임정열;이종옥
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.139-146
    • /
    • 2001
  • The seismic safety analysis were performed for the center-core rockfill dam(CCRD) The static and pseudo-static FEM analysis using seismic coefficient Method, and dynamic FEM analysis using Hachinohe earthquake wave(0.12g) were used for the seismic safety of CCRD. The results of seismic analysis were that the factor of safety of down slope was 1.5, horizontal displacement is about 14.3cm, and vertical displacement is 3.3cm at dam creast. The model dam did not show any seismic stability problems for 0.12g. And much more research is still necessary in seismic safety of CCRD.

  • PDF

A Probabilistic Study on Seismic Response of Seismically Isolated Nuclear Power Plant Structures using Lead Rubber Bearing (LRB 면진장치를 적용한 원전구조물의 지진응답에 따른 확률론적 연구)

  • Kim, Hyeon-Jeong;Song, Jong-Keol;Moon, Ji-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.45-54
    • /
    • 2018
  • The seismically isolated nuclear power plants shall be designed for design basis earthquake (DBE) and considered to ensure safety against beyond design basis earthquake (BDBE). In order to limit the excessive displacement of the seismic isolation system of the seismically isolated structure, the moat is installed at a certain distance from the upper mat supporting the superstructure. This certain distance is called clearance to stop (CS) and is calculated from the 90th percentile displacement of seismic isolation system subjected to BDBE. For design purposes, the CS can be obtained simply by multiplying the median displacement of the seismic isolation system against DBE by scale factor with a value of 3. The DBE and BDBE used in this study were generated by using 30 sets of artificial earthquakes corresponding to the nuclear standard design spectrum. In addition, latin hyper cube sampling was applied to generate 30 sets of artificial earthquakes corresponding to maximum - minimum spectra. For the DBE, the median displacement and the 99th percentile displacement of the seismic isolation system were calculated. For the BDBE, the suitability of the scale factor was assessed after calculating the 90th percentile displacement of the seismic isolation system.