• Title/Summary/Keyword: safety facilities

Search Result 3,177, Processing Time 0.029 seconds

Occupational Health and Safety Management and Turnover Intention in the Ghanaian Mining Sector

  • Amponsah-Tawiah, Kwesi;Ntow, Michael Akomeah Ofori;Mensah, Justice
    • Safety and Health at Work
    • /
    • v.7 no.1
    • /
    • pp.12-17
    • /
    • 2016
  • Background: The mining industry is considered as one of the most dangerous and hazardous industries and the need for effective and efficient occupational health and safety management is critical to safeguard workers and the industry. Despite the dangers and hazards present in the mining industry, only few studies have focused on how occupational health and safety and turnover intentions in the mines. Method: The study suing a cross-sectional survey design collected quantitative data from the 255 mine workers that were conveniently sampled from the Ghanaian mining industry. The data collection tools were standardized questionnaires that measured occupational health and safety management and turnover intentions. These scales were also pretested before their usage in actual data collection. Results: The correlation coefficient showed that a negative relationship existed between dimensions of occupational health and safety management and turnover intention; safety leadership (r = -0.33, p < 0.01); supervision (r = -0.26, p < 0.01); safety facilities and equipment (r = -0.32, p < 0.01); safety procedure (r = -0.27, p < 0.01). Among these dimensions, safety leadership and safety facility were significant predictors of turnover intention, (${\beta}=-0.28$, p < 0.01) and (${\beta}=-0.24$, p < 0.01) respectively. The study also found that turnover intention of employees is heavily influenced by the commitment of safety leadership in ensuring the effective formulation of policies and supervision of occupational health and safety at the workplace. Conclusion: The present study demonstrates that safety leadership is crucial in the administration of occupational health and safety and reducing turnover intention in organizations.

A Study of the Sustainable Operation Technologies in the Power Plant Facilities (발전 설비 지속 가능 운영 기술 연구)

  • Lee, Chang Yeol;Park, Gil Joo;Kim, Twehwan;Gu, Yeong Hyeon;Lee, Sung-iI
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.842-848
    • /
    • 2020
  • Purpose: It is important to operate safely and economically in obsolescent power plant facilities. Economical operation is related in the balance of the supply and demand. Safety operation predicts the possible risks in the facilities and then, takes measures to the facilities. For the monitoring of the power plant facilities, we needs several kinds of the sensing system. From the sensors data, we can predict the possible risk. Method: We installed the acoustic, vibration, electric and smoke sensors in the power plant facilities. Using the data, we developed 3 kinds of prediction models, such as, demand prediction, plant engine abnormal prediction model, and risk prediction model. Results: Accuracy of the demand prediction model is over 90%. The other models make a stable operation of the system. Conclusion: For the sustainable operation of the obsolescent power plant, we developed 3 kinds of AI prediction models. The model apply to JB company's power plant facilities.

A Study on Accidents Occurred in Primary Schools and on the Experimental Test of the Safety of Building Floors (초등학교의 시설물 관련 안전사고 실태분석 및 실내바닥의 거주안전성에 관한 실험적 연구)

  • Choi, Soo-Kyung;Park, Chan-Joo;Kim, Soo-Gil
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.17 no.3
    • /
    • pp.21-32
    • /
    • 2010
  • The purpose of this study is to examine the improvement of the slipperiness of building floors and to test the safety in accidental collision in the primary schools. To perform this purpose effectively, the actual 20,202 cases of accident on the year 2000-2009 which had been dealt by Seoul School Safety and Insurance Association were analysed in several aspects. And to test the current slipperiness and hardness of building floors, 3 primary schools whose construction year differed were examined. This study found that among the indoor accidents of 2,646 cases on the year 2000-2002, 70.7% accidents of them were caused by slipperiness. It was also found that the building floors of the primary schools could not be safe from the result of examining the slipperiness and hardness of the building floors. As the result of this study, it showed that the desirable efficient criterion of slipperiness would be more than C.S.R 0.4, and that of safety in accidental collision would be less than Gs 100G for the safety of primary school students.

A Study on Explosion Risk Management for Hot Oil Heater (열매체 가열기 설비에서의 폭발위험관리에 관한 연구)

  • Jang, Chul;Kwon, Jin-Wook;Hwang, Myoung-Hwan
    • Journal of the Korea Safety Management & Science
    • /
    • v.19 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • In the industrial field, various type of fuel have been used for product processing facilities. Recent for 10 years, the usage of natural gas (NG) was gradually increased. Because it has many merits; clean fuel, no transportation, storage facility and so on. There are common safety concept that strict explosion protection approaches are needed for facilities where explosive materials such as flammable liquid, vapor and gases exist. But some has an optimistic point of view that the lighter than air gases such as NG disperse rapidly, hence do not form explosion environment upon release into the atmosphere, many parts has a conventional safety point of view that those gases are also inflammable gases, hence can form explosion environment although the extent is limited and present. In this paper, the heating equipments (Hot Oil Heater) was reviewed and some risk management measures were proposed. These measures include hazardous area classification and explosion-proof provisions of electric apparatus, an early gas leak detection and isolation, ventilation system reliability, emergency response plan and training and so on. This study calculates Hazardous Area Classification using the hypothetical volume in the KS C IEC code.

Technical Review on the QRA of Railway Safety Facilities (철도 안전 설비의 정량적 위험평가 기술)

  • Choi, Kwon-Hee;Kim, You-Ho;Lee, Jong-Woo;Song, Joong-Ho;Song, Kwang-Yeol
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.3
    • /
    • pp.1-8
    • /
    • 2011
  • The overall goal of a safety based railroad system is either to eliminate hazards in designing or to minimize the possibility of it. In order to indicate system safety or low risk although it may not be possible to achieve zero risk conditions, first, it shall ensure that any disasters would occur due to system operation because the prescribed specifications are properly fulfilled and there are no failures of any kind. Second, the risk of faults or failures leading to a mishap must be eliminated or minimized by using fault-tolerance or fail-safe procedures. This paper will attempt to summarize the personal and social risk criterion at widely scattered points, presently used as a safety approach in all over EU, in order to establish the step by step procedures of the detailed standard for railway facilities. In addition, we present the new safety analysis method using the SIL-based evaluation standard and the Reachability Graph of the Petri Net.

Safety Analysis of Potential Hazards at Hydrogen Refueling Station (수소충전소 잠재적 위험에 대한 안전성해석)

  • Park, Woo-Il;Kim, Dong-Hwan;Kang, Seung-Kyu
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.4
    • /
    • pp.43-48
    • /
    • 2021
  • This study was conducted using FLACS, a specialized gas accident analysis program. Hydrogen refueling stations subject of safety analysis, consist of compression facilities, storage tanks, and hydrogen piping. The safety analysis of potential risk factors was conducted after reflecting the design specifications of major facilities and components, environmental conditions around hydrogen refueling stations, etc. As of 2021, about 70 refueling stations in Korea are available, and 1,200 are scheduled to be introduced in the next 2040. To prepare for possible accidents caused by potential hazards for the safe distribution of hydrogen refueling stations, we intend to derive hydrogen leakage diffusion scenarios and review their safety.

A Study on the Improvement of Life Safety Code for Logistics Warehouse Facilities (물류창고 시설의 인명안전기준 개선 방안에 관한 연구)

  • Kim, Yun-Seong;Jin, Seung-Hyeon;Lee, Byeong-Heun;Kwon, Yeong-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.98-99
    • /
    • 2021
  • The number of fires in the Korean distribution warehouse increased by about 350 from 1,070 in 2014 to 1,416 in 2020. In addition, the fire load increases with the scale of the distribution warehouse, and even if the automatic sprinkler operates, there is a limit to the direct intrusion of the water source into the ignition source, and the detector is often installed on a high ceiling. The sensing time is often delayed. In order to improve the fire safety of such distribution warehouses, the US NFPA stipulates in detail the contents related to the facility, such as sprinkler water discharge standards, rack-type warehouse installation height restrictions, and regulations on collection and equipment. However, in Japan, the goods loaded inside the distribution warehouse are not classified in detail, and it is considered that the fire safety for the distribution warehouse is low due to the relaxation regulations of the fire prevention section. Therefore, in this study, common problems are classified into material, spatial, and safety management characteristics through the cases of distribution warehouse fires that occurred in Korea and abroad, and the problems related to distribution warehouses in Korea and abroad are compared and analyzed. And present basic materials for improving the life safety standards of future distribution warehouse facilities.

  • PDF

A Study on the Development of Cabin Safety Learning Contents Using Virtual Reality Technology (VR) (가상현실 기술을 활용한 객실안전 학습 콘텐츠 개발 연구)

  • Ha-Young Kim;Jung-Hwa You
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.31 no.2
    • /
    • pp.25-37
    • /
    • 2023
  • The purpose of this study is to develop and technically implement the design and scenario of cabin safety contents for virtual reality (VR)-based cabin safety learning for aviation service majors. The process for developing VR cabin safety learning contents consisted of a total of four stages: learning stage, research stage, verification stage, and application stage. The cabin safety scenario items for the production of VR learning contents reflected the occurrence of an emergency, the procedure for survival from impact, and the evacuation procedure from the aircraft as the core. For the technical implementation of learning contents, modeling work is conducted by checking scenario reviews, types and numbers of objects related to equipment and facilities, and items of interaction. In addition, the connection work with the actual metaverse platform is carried out to enable the utilization of the manufactured facilities and equipment objects. Finally, application tests were carried out to reconfirm supplementary items.