• Title/Summary/Keyword: safety control and management system

Search Result 939, Processing Time 0.037 seconds

A Study on the Development of a Wide-Area Monitoring and Control System for Tug/barges

  • Moon, Serng-Bae;Kim, Bo-Kyung;Jeong, Tae-Gweon
    • Journal of Navigation and Port Research
    • /
    • v.33 no.9
    • /
    • pp.609-614
    • /
    • 2009
  • The traffic of tug/barges which are carrying construction materials, large plants for harbor development, or offshore structures has recently increased in the coast of Korea. The west and south coast of Korea are always congested due to a lot of islands and traffic concentration. Specially tug/barges have higher probability of marine accidents due to their bad maneuverability than others. Considering the operational circumstance and maneuverability, this study was to develop a wide-area monitoring and control system for tug/barges in the coastal area of Korea. The system was made in the form of three program modules i.e. navigation analysis program module, monitoring and control program module, database module. And seven functions were programmed to monitor and control the tug/barges efficiently. These are ship information search, tug/barge information and track management, designated area and safe navigation zone management, fairway management, accident data management, warning of danger, safety information management.

Remote Material Handling Through Internet (인터넷을 통한 원격 자재취급에 관한 연구)

  • Kim, Seok-Ho;Han, Yeong-Geun;Park, Gang;Kang, Gyeong-Sik
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2002.11a
    • /
    • pp.157-163
    • /
    • 2002
  • Automated manufacturing systems are applied to shop floors as a tool for the increase of productivity and quality and the decrease of manufacturing lead times and industry accidents. One of the most important issue of the present day is the application of Internet. The development of Internet technologies makes manufacturing enterprises break spacial barriers between users and shop floors, and collect various field data in remote sites. In this research, an Internet-based remote control system for a small-sized automated storage and retrieval system is developed for the purpose of real-time monitoring and control of automatic production equipment. The developed system has a client-server architecture and transmits real-time images of the automated storage and retrieval system to a client by ar CCD camera connected to a server. Based on the transmitted images, the client sends commands to PLC of the server, and part storage and retrieval tasks are executed.

  • PDF

A Study on the Development of AVCS(Airside Vehicle Control System) in Gimpo Airport Based on RTK-GPS (RTK-GPS 기반의 김포공항 이동지역 차량통제 시스템 개발방안 연구)

  • Sanghoon Cha;Minguan Kim;Jeongil Choi
    • Journal of Information Technology Services
    • /
    • v.22 no.3
    • /
    • pp.85-100
    • /
    • 2023
  • The development of Airside Vehicle Control System(AVCS) at Gimpo Airport aims to reduce ground safety accidents in movement area and improve airport operation efficiency and safety management service quality. The vehicle is controlled by a brake controller RTK-antenna and On-Board Diagonostics(OBD) module. Location data is transmitted to a nearby communication base station through a Wi-Fi router and the base station is connected to the AVCS by an optical cable to transmit location data from each vehicle. The vehicle position is precisely corrected to display information using the system. The system allows airport operators to view registered information on aircraft and vehicles and monitor their locations speeds and directions in real time. When a vehicle approaches a dangerous area alarm warnings and remote brake control are possible to prevent accidents caused by carelessness of the driver in advance.

Distributed IoT Sensor based Laboratory Safety Management System (분산 IoT센서 기반 실험실 안전관리 시스템)

  • Jeong, Daejin;Kim, Jaeyoon;Bae, Sangjung;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.90-96
    • /
    • 2019
  • Storage cabinet in a lab in these days measures various environmental factors in real-time with IoT sensors. Preexisting system collects sensor data, analyze a risk and then command other equipment. Such centralized control system tends to have an issue with of speed slowing down. It's because when there are more storage cabinets, there are more data to process. In order to solve this issue, this report addresses decentralized IoT sensor based lab safety control system. It can analyze internal state of storage cabinet to identify any hazardous situations and effectively control them. Such decentralized control system using sensor modules for internal environment of the cabinet storage and automated control algorithm based on administrator's log history can manage any hazardous situations by automated control of environment factors of inside a lab. It would allow users to deal with a hazard if it happens. Even better, it can prevent it to happen from the beginning.

A Systematic Method for Analyzing Human Factors-Related Accidents to Improve Aviation Safety in the Air Force (공군의 항공안전 향상을 위한 인적요소 관련 사고의 체계적 분석 기법)

  • Lim, Chea-Song;Ham, Dong-Han
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.101-111
    • /
    • 2014
  • Aviation safety is increasingly important to secure the safety of the Republic of Korea Air Force (ROKAF). A critical activity for enhancing aviation safety is to analyze an accident throughly and to identify causes that can explain it reasonably. The results of such a systematic accident investigation can be effectively used for improving information displays, task procedures, and training systems as well as for reorganizing team structure and communication control system. However, the current practice of analyzing aviation accidents in ROKAF is too superficial and simple to diagnose them systematically. Additionally, the current practice does not give a full consideration to human factors that have been identified as main causes of most of the aviation accidents. With this issue in mind, this study aims to suggest a new approach to analyzing aviation accidents related to human factors.The proposed method is developed on the basis of several models and frameworks about system safety, human error, and human-system interaction. Its application to forty-two human factors-related accidents, which have occurred in ROKAF during the last ten years, showed that the proposed method could be a useful tool for analyzing aviation accidents caused by human factors.

Summative Usability Assessment of Software for Ventilator Central Monitoring System (인공호흡기 중앙감시시스템 소프트웨어의 사용적합성 총괄평가)

  • Ji-Yong Chung;You Rim Kim;Wonseuk Jang
    • Journal of Biomedical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.363-376
    • /
    • 2023
  • According to the COVID-19, development of various medical software based on IoT(Internet of Things) was accelerated. Especially, interest in a central software system that can remotely monitor and control ventilators is increasing to solve problems related to the continuous increase in severe COVID-19 patients. Since medical device software is closely related to human life, this study aims to develop central monitoring system that can remotely monitor and control multiple ventilators in compliance with medical device software development standards and to verify performance of system. In addition, to ensure the safety and reliability of this central monitoring system, this study also specifies risk management requirements that can identify hazardous situations and evaluate potential hazards and confirms the implementation of cybersecurity to protect against potential cyber threats, which can have serious consequences for patient safety. As a result, we obtained medical device software manufacturing certificates from MFDS(Ministry of Food and Drug Safety) through technical documents about performance verification, risk management and cybersecurity application.The purpose of this study is to conduct a usability assessment to ensure that ergonomic design has been applied so that the ventilator central monitoring system can improve user satisfaction, efficiency, and safety. The rapid spread of COVID-19, which began in 2019, caused significant damage global medical system. In this situation, the need for a system to monitor multiple patients with ventilators was highlighted as a solution for various problems. Since medical device software is closely related to human life, ensuring their safety and satisfaction is important before their actual deployment in the field. In this study, a total of 21 participants consisting of respiratory staffs conducted usability test according to the use scenarios in the simulated use environment. Nine use scenarios were conducted to derive an average task success rate and opinions on user interface were collected through five-point Likert scale satisfaction evaluation and questionnaire. Participants conducted a total of nine use scenario tasks with an average success rate of 93% and five-point Likert scale satisfaction survey showed a high satisfaction result of 4.7 points on average. Users evaluated that the device would be useful for effectively managing multiple patients with ventilators. However, improvements are required for interfaces associated with task that do not exceed the threshold for task success rate. In addition, even medical devices with sufficient safety and efficiency cannot guarantee absolute safety, so it is suggested to continuously evaluate user feedback even after introducing them to the actual site.

Energy Saving System of EHP Control at the College Lecture Room (대학교 강의실 EHP 제어를 이용한 에너지 절약 시스템)

  • Jeong, Kybum
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.2
    • /
    • pp.167-174
    • /
    • 2014
  • Heating and air conditioning system is changing rapidly from the traditional HVAC central supply system to the individual supply system with electrical heat pump system (EHP) in Korean school buildings. The individual supply system has advantages to turn on and off individually and to adjust the thermal comfort separately, but energy is wasted in the unoccupied classroom when the last leaving occupant does not turn off the controller. If the controller is to be off automatically while the classroom is not in use, energy consumption would decrease dramatically. This project aims to cease the unnecessary EHP supply in vacant classroom by inputting the class schedule from the central control room to reduce the energy-spending. Experimental measurements were carried out between the controlled classroom that is turned off when not in use and the uncontrolled room that is turned on continually. Occupant's comfort and energy consumption were measured and compared between the controlled case and the uncontrolled case. The energy consumption of controlled classroom case is 30-60% less than that of the uncontrolled classroom case. This result shows that controlling the cooling supply for the unoccupied classroom using the class schedule can decrease the energy consumption remarkably. This supply control system can be used to conserve energy in school structures like universities.

Impact of Special Causes on First-Order System Feedback Process Adjustment (First-Order System 피드백 공정 조정에서 이상원인의 영향)

  • Jun, Sang-Pyo
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.5
    • /
    • pp.49-55
    • /
    • 2007
  • A special cause producing temporary deviation in the underlying process can influence on process adjustment in First-Order System feedback control system. In this paper, the impact of special causes on the forecasts and the process adjustment that is based on the EWMA forecasts are derived for a first-order system. For some special causes with patterned type of contamination, the influence of the causes on the output process are explicitly investigated. A data set, contaminated by a special cause of level shift, is analyzed to confirm the impact numerically.

Wireless safety monitoring of a water pipeline construction site using LoRa communication

  • Lee, Sahyeon;Gil, Sang-Kyun;Cho, Soojin;Shin, Sung Woo;Sim, Sung-Han
    • Smart Structures and Systems
    • /
    • v.30 no.5
    • /
    • pp.433-446
    • /
    • 2022
  • Despite efforts to reduce unexpected accidents at confined construction sites, choking accidents continue to occur. Because of the poorly ventilated atmosphere, particularly in long, confined underground spaces, workers are subject to dangerous working conditions despite the use of artificial ventilation. Moreover, the traditional monitoring methods of using portable gas detectors place safety inspectors in direct contact with hazardous conditions. In this study, a long-range (LoRa)-based wireless safety monitoring system that features the network organization, fault-tolerant, power management, and a graphical user interface (GUI) was developed for underground construction sites. The LoRa wireless data communication system was adopted to detect hazardous gases and oxygen deficiency within a confined underground space with adjustable communication range and low power consumption. Fault tolerance based on the mapping information of the entire wireless sensor network was particularly implemented to ensure the reliable operation of the monitoring system. Moreover, a sleep mode was implemented for the efficient power management. The GUI was also developed to control the entire safety-monitoring system and to manage the measured data. The developed safety-monitoring system was validated in an indoor testing and at two full-scale water pipeline construction sites.

A Human Function Deployment for Managing Human Factor in Korea railroad (국내 철도시스템에서 기능전개를 통한 인적요소 관리방안 연구)

  • Heo, Eun-Mee;Kim, Sa-Kil;Byun, Seong-Nam
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.1376-1382
    • /
    • 2009
  • Railway system is a word that includes rolling stock, railway infrastructure and signalling System in passenger transfer and rail freight. This system get higher competitiveness in energy efficiency part than other transfer system. But it is comprehensive system has latent loss of lives and property by big accident. First of all, to control this comprehensive system and to confirm safety of it, we need human resource management. This research will suggest how to apply efficiency safety verification and certification system to railway system. human resource management systems is defined as three kinds that is recruitment and management, ensure personnel's competencies and fitness, activity of assigning suitable responsible person for work.

  • PDF