Impact of Special Causes on First-Order System Feedback Process Adjustment

First-Order System 피드백 공정 조정에서 이상원인의 영향

  • Jun, Sang-Pyo (Department of General Education, Nam Seoul University)
  • 전상표 (남서울대학교 교양학과)
  • Published : 2007.10.30

Abstract

A special cause producing temporary deviation in the underlying process can influence on process adjustment in First-Order System feedback control system. In this paper, the impact of special causes on the forecasts and the process adjustment that is based on the EWMA forecasts are derived for a first-order system. For some special causes with patterned type of contamination, the influence of the causes on the output process are explicitly investigated. A data set, contaminated by a special cause of level shift, is analyzed to confirm the impact numerically.

Keywords

References

  1. Alwan, L. C. and Roberts, H. V. (1988) , 'Time-Series Modeling for Statistical Process Control', Journal of Business & Economic Statistics, Vol. 6, No.1, pp. 87-95 https://doi.org/10.2307/1391421
  2. Atienza, O. O., Tang, L. C., and Ang, B. W. (1998), 'A SPC Procedure for Detecting Level Shifts of Autocorrelatecl Processes', Journal of Quality Technology, Vol. 30, No. 4, pp. 340-351 https://doi.org/10.1080/00224065.1998.11979870
  3. Baxley, R,V., Jr.(1994), 'Application of the EWMA for Algorithmic Statistical Process Control,' Quality Engineering, Vol. 7, pp. 397-418 https://doi.org/10.1080/08982119408918792
  4. Box, G. E. P., Coleman, D. E., and Baxley, R., Jr. (1997), 'A Comparison of Statistical Process Control and Engineering Process Control,' Journal of Quality Technology, Vol. 29, No. 2, pp. 128-130 https://doi.org/10.1080/00224065.1997.11979740
  5. Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (1994), Time Series Analysis, Forecasting, and Control, 3rd Ed., Prentice Hall, Englewood Cliffs, NJ
  6. Box, G. E. P. and Kramer, T. (1992), 'Statistical Process Monitoring and Feedback Adjustment-A Discussion,' Technometrics, Vol. 34, pp. 251-285 https://doi.org/10.2307/1270028
  7. Box, G. E. P. and Lucceno, A. (1997), Statistical Control By Monitoring and Feedback Adjustment, John wiley & Sons, New York
  8. Bruce, A. G. and Martin, R. D. (1989), 'Leave-k-Out Diagnostic for Time Series (with Discussion),' Journal of the Royal Statistical Society, Series B, Vol. 51, pp. 363-424
  9. Chen, C. and Liu, L.-M. (1993), 'Forecasting Time Series with Outliers', Journal of Forecasting, Vol. 12, pp. 12-35
  10. Cho, Sinsup, Ryu, Gui Yeol, Park, B. U, and Lee, J. J. (1993), 'Outlier Detection Diagnostic based on Interpolation Method in Autoregressive Models', Journal of the Korean Statistical Society, Vol. 22, No. 2, 283-306
  11. Crowder, S. V., Hawkins, D. M., Reynold M. R. JR., and Yashchin, E. (1997), 'Process Control and Statistical Inference', Journal of Quality Technology, Vol. 29, No. 2, pp. 134-139 https://doi.org/10.1080/00224065.1997.11979742
  12. Jiang, W., Tsui, K-L, and Woodall, W. H. (2000), A New SPC Monitoring Method: The ARMA Chart, Technometrics, Vol. 42, No. 4, 399-410 https://doi.org/10.2307/1270950
  13. Ledolter, J. (1989), 'The Effect of Additive Outliers on the Forecasts from ARIMA models', Journal of Forecasting, Vol. 5, pp. 231-240 https://doi.org/10.1016/0169-2070(89)90090-3
  14. Lee, Jae June (1994), 'Detection of Local Structural Changes in Time Series,' The Korean Journal of Applied Statistics, Vol. 7, No. 2, pp. 299-311
  15. Tsay, R. S. (1986), 'Time Series Model Specification in the Presence of Outliers,' Journal of American Statistical Association, Vol. 81, pp. 131-141
  16. Tucker, W. T., Faltin, F. W., and Vander Wid, S. A. (1993), 'Algorithmic Statistical Process Control: An Elaboration,' Technometrics, Vol. 35, pp. 363-375 https://doi.org/10.2307/1270270
  17. Zhang, N. F. (1998), A Statistical Control Chart for Stationary Process Data, Technometrics, Vol. 40, No. 1, 24-38 https://doi.org/10.2307/1271390
  18. 이재준, 전상표,이종선, (2003), 'EWMA 피드백 공정조정에서 이상원인의 영향': 품질경학회지, 제31권, 제2호, pp183-193
  19. 전상표(2000), '공정 모니터닝과 조절에 있어 이상원인의 문제'. 인하대학교 대학원 박사학위논문,