• Title/Summary/Keyword: safety coefficient

Search Result 1,350, Processing Time 0.03 seconds

A Study on the Shock Absorption Performance of the Safety Helmet using Coefficient of Restitution (반발계수를 이용한 안전모의 충격 흡수 성능에 관한 연구)

  • Shin, Woon-Chul
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.5
    • /
    • pp.30-34
    • /
    • 2012
  • A safety helmet is a personal protective equipment to protect the head from falling and flying objects. A safety helmet has the maximum delivered impact force as shock absorption performance, the lower delivered impact force the better performance, which was not a controlled variety during manufacturing safety helmet. Accordingly there were some difficulties in establishing the standard for improved performance as there was not a clear controllable impact force for improved performance. In this study the shock absorption performance was intended to be found as coefficient of restitution related to impulse. As a research method, a coefficient of restitution during the absorption of shock was calculated using the impulse transferred to pharynx utilizing the safety helmet shock absorption performance testing device based on the theory of momentum and impulse. The estimated impulsive force curve was derived assuming that shock was not absorbed using the measured data. The sample was selected as tested goods of ABS material for safety certification available mainly in the market. As a result of study, the maximum delivered impact force of safety helmet made by a domestic safety certified a company was 735 N, and its coefficient of restitution proved to be 0.64. The smaller coefficient of restitution is, the lower maximum delivered impact force and the higher shock absorption performance. The coefficient of restitution can be used as a performance index of safety helmet.

A Study on New Measurement of Derailment Coefficient for Rolling Stocks (철도차량의 새로운 탈선계수 측정방법에 관한 연구)

  • Hong, Yong-Ki;You, Won-Hee;Lee, Hi-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.306-312
    • /
    • 2007
  • The running safety of rolling stock is assessed by derailment coefficient. It requires lots of preparatory time, expenditure and high measurement technique to measure derailment coefficient. If derailment coefficient could be measured when track or vehicle is maintained, safety will be improved. The measurement and assessment of running safety is necessary for safety especially for the vehicles newly developed and started service. Therefore measurement of derailment coefficient is most important thing to secure running safety. In this paper, we examined new assessment method which could estimate derailment coefficient by measuring vibration acceleration and displacement of vehicle operating at actual track irrespective of time and place. The new method could be used effectively as a mean confirming running safety.

  • PDF

A Study on the Slope Stability of Embankment in Consideration of Seismic Coefficient (지진계수를 고려한 제방의 사면안정에 관한 연구)

  • 강우묵;지인택;이달원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.33 no.4
    • /
    • pp.105-120
    • /
    • 1991
  • This study was performed to investigate the minimum safety factor of embankment in consideration of seismic coefficient by the psuedo-static analysis The variables were cohesion, the internal friction angle, angle of slope, height of seepage, height of embankment, depth of replacement The results obtained were compared with those by Fellenius method, simplified Bishop method and Janbu method. The results were summarized as follows: 1.The increasing rate of the minimum safety factor with the increasing of cohesion appeared larger in Fellenius method and Bishop method than in Janbu method. And that with the increasing of the internal friction angle appeared the lowest value in Janbu method. The minimum safety factor was influenced larger on the internal friction angle than on cohesion. 2.The variation of the minimum safety factor with the height of seepage at 0m and 5 m was nearly similar to Fellenius method, Bishop method and Janbu method. On the other hand, it was decreased suddenly at 25 m. 3.The minimum safety factor with the height of embankment was decreased remarkably under 10 m with the increasing of seismic coefficient. But, it was decreased slowly more than 10 m. As the height of embankment was low, the influence of cohesion appeared larger. 4.In heigher case of the depth of replacement, the phenomenon of reduction of the minimum safety factor appeared remarkably with seismic coefficient increased. And in lower case of the depth of replacement, the minimum safety factor was similar in Fellenius method and Bishop mehtod. But it appeared larger in Bishop method and Janbu method than in Fellenius method with the depth of replacement increased. 5.As the cohesion and the internal friction angle were large, the phenomenon of reduction of the minimum safety factor with the increasing of seismic coefficient appeared remarkably. Also, the influence of seismic coefficient in minimum safety factor appeared larger with the soil parameter increased. 6.When the seismic coefficient was considerated, investigation of the structural body on the slope stability appeared profitably in Fellenius method and Janbu method than in Bishop method.

  • PDF

Estimation of Curving Performance and Running Safety of Gwangju Electric Multiple Unit for City Subway (광주도시철도 전동차의 곡선추종성 및 주행안전성 평가)

  • Ham, Young-Sam;Oh, Taek-Yul
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.745-750
    • /
    • 2004
  • For the safety of railway, it should be evaluated for the running safety by measuring the derailment coefficient. Although railway has run the fixed and maintained rail, some of railway is derailed. This report shows the results that performed the static load test, wheelset manufacturing for test, main line running test on the basis of the derailment theory and experience. It is executed main line test into more than 80km/h for estimating the curving performance and running safety of Gwangju EMU. As the test results, could confirm the curving performance and running safety of Gwangju EMU from the results of the wheel unloading, lateral force, derailment coefficient etc. Derailment coefficient was less than 0.8, and lateral force allowance limit and wheel load reduction ratio were enough safe.

  • PDF

Neutronics analysis of JSI TRIGA Mark II reactor benchmark experiments with SuperMC3.3

  • Tan, Wanbin;Long, Pengcheng;Sun, Guangyao;Zou, Jun;Hao, Lijuan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1715-1720
    • /
    • 2019
  • Jozef Stefan Institute (JSI), TRIGA Mark II reactor employs the homogeneous mixture of uranium and zirconium hydride fuel type. Since its upgrade, a series of fresh fuel steady state experimental benchmarks have been conducted. The benchmark results have provided data for testing computational neutronics codes which are important for reactor design and safety analysis. In this work, we investigated the JSI TRIGA Mark II reactor neutronics characteristics: the effective multiplication factor and two safety parameters, namely the control rod worth and the fuel temperature reactivity coefficient using SuperMC. The modeling and real-time cross section generation methods of SuperMC were evaluated in the investigation. The calculation analysis indicated the following: the effective multiplication factor was influenced by the different cross section data libraries; the control rod worth evaluation was better with Monte Carlo codes; the experimental fuel temperature reactivity coefficient was smaller than calculated results due to change in water temperature. All the results were in good agreement with the experimental values. Hence, SuperMC could be used for the designing and benchmarking of other TRIGA Mark II reactors.

Evaluation of Running Safety for Depressed Center Flat Car of 3-axle Bogie (3-축 대차 곡형평판차량의 주행안전성 평가)

  • Ham, Young-Sam;Seo, Jung-Won;Kwon, Seok-Jin;Lee, Dong-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.559-564
    • /
    • 2011
  • For the safety of railway, it should be evaluated for the running safety by measuring the derailment coefficient. Although railway has run the fixed and maintained rail, some of railway is derailed. This report shows the results that performed the static load test, main line running test on the basis of the derailment theory and experience. It is executed main line test into more than 90km/h for estimating the curving performance and running safety of depressed center flat car of 3-axle bogie. As the test results, could confirm the curving performance and running safety of depressed center fiat car of 3-axle bogie from the results of the wheel unloading, lateral force, derailment coefficient etc. Derailment coefficient was less than 0.6, and lateral force allowance limit and wheel load reduction ratio were enough safe.

A Study of Cognitive Slips According to Contaminants on the Floor

  • Kim, Jong-Il;Park, Min Soo;Kim, Tae-Gu
    • Safety and Health at Work
    • /
    • v.9 no.2
    • /
    • pp.180-183
    • /
    • 2018
  • Background: This research investigates the degrees of slipperiness felt by the participants who walk on contaminants applied to a floor surface to decide degrees of slipperiness for various contaminants. Methods: For the experiment, 30 participants walked on a floor to which six contaminants were applied. All participants took the analytic hierarchy process (AHP)-based slipperiness questionnaire survey for the six kinds of contaminants, and the results were compared with the coefficient of friction. Results: The results of slip risk from the AHP indicate that grease is the most slippery of the six contaminants, followed by diesel engine oil, hydraulic oil, cooking oil, water-soluble cutting oil, and water in a decreasing order of slipperiness. When the results of slip risk from the AHP are compared with the static coefficient of friction for each contaminant, the order of slip risk follows the same trend. Although the results of slip risk from the AHP coincide with the static coefficient of friction, further study would be needed to investigate this relationship. Conclusion: This study will contribute as reference material for future research on preventing industrial accidents that result in falls from high places due to slipping.

A Study on the Safety Improvement of Lifting Purpose Chain Sling (인양용 체인슬링의 안전성 향상 방안 고찰)

  • Jin Woo Lee;Cheol Ho Han;Song Woo Lee;Young Hun Jeon;Chang Hee Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.4
    • /
    • pp.60-67
    • /
    • 2023
  • Various lifting slings are used in domestic industrial sites depending on the purpose, form, and environment. Each sling has its characteristics, and safe lifting work is possible when its performance meets the regulations. Therefore, this study analyzed domestic and foreign regulations and guidelines related to chain slings. It identified significant problems by analyzing the chain-sling-related disaster cases. The current status of chain slings used by various industries and the ways to improve chain sling safety were studied. The major chain sling issues were: 1) employing improper components to chains, 2) having different safety coefficients between the regulation and industrial standards, and 3) using chains unsuitable for lifting purposes. Based on these issues, the following measures were proposed to improve chain sling work safety: 1) revise the safety coefficient requirements under the Regulations on Occupational Safety and Health Standards, 2) disseminate specialized sling courses, and 3) strengthen on-site chain slings-related training. In the future, this study is expected to minimize chain use mistakes by unifying the safety coefficient related to chain slings and recognizing the importance of correctly selecting components employed in the chain.

AEBS Algorithm with Tire-Road Friction Coefficient Estimation (타이어-노면 마찰계수 추정을 이용한 AEBS 알고리즘)

  • Han, Seungjae;Lee, Taeyoung;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.5 no.2
    • /
    • pp.17-23
    • /
    • 2013
  • This paper describes an algorithm for Advanced Emergency Braking(AEB) with tire-road friction coefficient estimation. The AEB is a system to avoid a collision or mitigate a collision impact by decelerating the car automatically when forward collision is imminent. Typical AEB system is operated by Time-to-collision(TTC), which considers only relative velocity and clearance from control vehicle to preceding vehicle. AEB operation by TTC has a limit that tire-road friction coefficient is not considered. In this paper, Tire-road friction coefficient is also considered to achieve more safe operation of AEB. Interacting Multiple Model method(IMM) is used for Tire-road friction coefficient estimation. The AEB algorithm consists of friction coefficient estimator and upper level controller and lower level controller. The numerical simulation has been conducted to demonstrate the control performance of the proposed AEB algorithm. The simulation study has been conducted with a closed-loop driver-controller-vehicle system using using MATLAB-Simulink software and CarSim Vehicle model.

Estimation of Running Safety of Electric Multiple Unit for Express Train in Incheon International Airport Railway (인천국제공항철도 직통형 차량의 주행안전성 평가)

  • Ham, Young-Sam;Seo, Jung-Won;Hur, Hyun-Moo;Lee, Dong-Hyung;Kwon, Seok-Jin;Kwon, Sung-Tae;Hong, Yong-Ki;Park, Ok-Jeoung
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.109-114
    • /
    • 2007
  • For the safety of railway, it should be evaluated for the running safety by measuring the derailment coefficient. Although railway has run the fixed and maintained rail, some of railway is derailed. This report shows the results that performed the static load test, wheelset manufacturing for test, main line running test on the basis of the derailment theory and experience. It is executed main line test to 120 km/h for estimating the running safety of express train in Incheon International Airport. As the test results, could confirm the curving performance and running safety of Incheon International Airport EMU from the results of the wheel unloading, lateral force, derailment coefficient etc. Derailment coefficient was less than 0.8, and lateral force allowance limit and wheel load reduction ratio were enough safe.

  • PDF