Acknowledgement
Supported by : Chinese Academy of Sciences, National Natural Science Foundation of China
References
- D.R. Olander, E. Greenspan, H.D. Garkisch, B. Petrovic, Uraniumezirconium hydride fuel properties, Nucl. Eng. Des. 239 (2009) 1406-1424. https://doi.org/10.1016/j.nucengdes.2009.04.001
- I. Mele, M. Ravnik, A. Trkov, TRIGA Mark II benchmark experiment, Part I: steady-state operation, Nucl. Technol. 105 (1994) 37-51. https://doi.org/10.13182/NT94-A34909
- I. Mele, M. Ravnik, A. Trkov, TRIGA Mark II benchmark experiment; Part II: pulse operation, Nucl. Technol. 105 (1994) 52-58. https://doi.org/10.13182/NT94-1
- R. Jeraj, M. Ravnik, TRIGA Mark II Benchmark Critical Experiment, International Handbook of Evaluated Critical Safety Benchmark Experiments," IEU-COMPTHERM-003, Organization for Economic Cooperation and Development0Nuclear Energy Agency Data Bank, 1999.
- R. Jeraj, B. Glumac, M. Maucec, Monte Carlo simulation of the TRIGA Mark II benchmark experiment, Nucl. Technol. 120 (1997) 179-187. https://doi.org/10.13182/NT97-A35409
- M. Tombakoglu, Y. Cecen, Control Rod Worth Evaluation of TRIGA Mark II Reactor, 2001.
- M. Ravnik, R. Jeraj, Research reactor benchmarks, Nucl. Sci. Eng. 145 (2003) 145-152. https://doi.org/10.13182/NSE03-A2370
- R. Henry, I. Tiselj, L. Snoj, Analysis of JSI TRIGA MARK II reactor physical parameters calculated with TRIPOLI and MCNP, Appl. Radiat. Isot. 97 (2015) 140-148. https://doi.org/10.1016/j.apradiso.2014.12.017
- D. Calic, G. Zerovnik, A. Trkov, L. Snoj, Validation of the Serpent 2 code on TRIGA Mark II benchmark experiments, Appl. Radiat. Isot. 107 (2016) 165-170. https://doi.org/10.1016/j.apradiso.2015.10.022
- H. Rehman, S. Ahmad, Neutronics analysis of TRIGA Mark II research reactor, Nucl. Eng. Technol. 50 (2017) 35-42. https://doi.org/10.1016/j.net.2017.11.003
- Y. Wu, J. Song, H. Zheng, G. Sun, L. Hao, P. Long, L. Hu, CAD-based Monte Carlo program for integrated simulation of nuclear system SuperMC, Ann. Nucl. Energy 82 (2015) 161-168. https://doi.org/10.1016/j.anucene.2014.08.058
- X. MCNP, Monte Carlo Team, MCNP da General Monte Carlo N-Particle Transport Code, 2005. Version, 5.
- Y. Wu, Multifunctional Neutronics Calculation Methodology and Program for Nuclear Design and Radiation Safety Evaluation, Fusion Science & Technology, 2018, pp. 1-9.
- Y. Wu, Conceptual design of the China fusion power plant FDS-II, Fusion Eng. Des. 83 (2008) 1683-1689. https://doi.org/10.1016/j.fusengdes.2008.06.048
- Y. Wu, J. Jiang, M.Y. Wang, M. Jin, F. Team, A fusion-driven subcritical system concept based on viable technologies, Nucl. Fusion 51 (2011) 103036. https://doi.org/10.1088/0029-5515/51/10/103036
- Y. Wu, Y. Bai, Y. Song, Q. Huang, Z. Zhao, L. Hu, Development strategy and conceptual design of China lead-based research reactor, Ann. Nucl. Energy 87 (2016) 511-516. https://doi.org/10.1016/j.anucene.2015.08.015
- Y. Wu, Z. Chen, L. Hu, M. Jin, Y. Li, J. Jiang, J. Yu, C. Alejaldre, E. Stevens, K. Kim, Identification of safety gaps for fusion demonstration reactors, Nature Energy 1 (2016) 16154. https://doi.org/10.1038/nenergy.2016.154
- Y. Wu, Design and R&D progress of China lead-based reactor for ADS research facility, Engineering 2 (2016) 124-131. https://doi.org/10.1016/J.ENG.2016.01.023
- Y. Wu, CAD-based interface programs for fusion neutron transport simulation, Fusion Eng. Des. 84 (2009) 1987-1992. https://doi.org/10.1016/j.fusengdes.2008.12.041
- Y. Wu, Development of high intensity DeT fusion neutron generator HINEG, Int. J. Energy Res. 42 (2018) 68-72. https://doi.org/10.1002/er.3572
- Q. Huang, C. Li, Y. Li, M. Chen, M. Zhang, L. Peng, Z. Zhu, Y. Song, S. Gao, Progress in development of China Low Activation Martensitic steel for fusion application, J. Nucl. Mater. 367 (2007) 142-146. https://doi.org/10.1016/j.jnucmat.2007.03.153
- Y. Wu, Design status and development strategy of China liquid lithiumelead blankets and related material technology, J. Nucl. Mater. 367 (2007) 1410-1415. https://doi.org/10.1016/j.jnucmat.2007.04.031
- Q. Huang, N. Baluc, Y. Dai, S. Jitsukawa, A. Kimura, J. Konys, R.J. Kurtz, R. Lindau, T. Muroga, G.R. Odette, Recent progress of R&D activities on reduced activation ferritic/martensitic steels, J. Nucl. Mater. (2013) 442.
- Q. Huang, Status and improvement of CLAM for nuclear application, Nucl. Fusion 57 (2017), 086042. https://doi.org/10.1088/1741-4326/aa763f
- Q. Gan, B. Wu, S. Yu, J. Song, Y. Wang, CAD-based hierarchical geometry conversion method for modeling of fission reactor cores, Ann. Nucl. Energy 94 (2016) 369-375. https://doi.org/10.1016/j.anucene.2016.03.013
- L. Snoj, A. Trkov, M. Ravnik, G. Zerovnik, Testing of cross section libraries on zirconium benchmarks, Ann. Nucl. Energy 42 (2012) 71-79. https://doi.org/10.1016/j.anucene.2011.12.001
- I. Lengar, A. Trkov, M. Kromar, L. Snoj, Digital meter of reactivity for use during zero-power physics tests at the Krsko NPP (Uporaba digitalnega merilnika reaktivnosti pri zagonskih testih na nicelni moci v NE Krsko), J. Energy Technol.-JET 5 (2012) 13-26.
- T. Zagar, M. Ravnik, A. Trkov, Isothermal Temperature Reactivity Coefficient Measurement in Triga Reactor, 2002.
Cited by
- The development of fuel management code TRACS for HFETR based on Unstructured-mesh variational nodal method vol.166, 2022, https://doi.org/10.1016/j.anucene.2021.108807