• Title/Summary/Keyword: safety benefits

Search Result 652, Processing Time 0.03 seconds

Coordinated supporting method of gob-side entry retaining in coal mines and a case study with hard roof

  • Liu, X.S.;Ning, J.G.;Tan, Y.L.;Xu, Q.;Fan, D.Y.
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1173-1182
    • /
    • 2018
  • The coal wall, gob-side backfill, and gangues in goaf, constitute the support system for Gob-side entry retaining (GER) in coal mines. Reasonably allocating and utilizing their bearing capacities are key scientific and technical issues for the safety and economic benefits of the GER technology. At first, a mechanical model of GER was established and a governing equation for coordinated bearing of the coal-backfill-gangue support system was derived to reveal the coordinated bearing mechanism. Then, considering the bearing characteristics of the coal wall, gob-side backfill and gangues in goaf, their quantitative design methods were proposed, respectively. Next, taking the No. 2201 haulage roadway serving the No. 7 coal seam in Jiangjiawan Mine, China, as an example, the design calculations showed that the strains of both the coal wall and gob-side backfill were larger than their allowable strains and the rotational angle of the lateral main roof was larger than its allowable rotational angle. Finally, flexible-rigid composite supporting technology and roof cutting technology were designed and used. In situ investigations showed that the deformation and failure of surrounding rocks were well controlled and both the coal wall and gob-side backfill remained stable. Taking the coal wall, gob-side backfill and gangues in goaf as a whole system, this research takes full consideration of their bearing properties and provides a quantitative basis for design of the support system.

Single-Stage Reconstruction with Titanium Mesh for Compound Comminuted Depressed Skull Fracture

  • Eom, Ki Seong
    • Journal of Korean Neurosurgical Society
    • /
    • v.63 no.5
    • /
    • pp.631-639
    • /
    • 2020
  • Objective : Traditionally, staged surgery has been preferred in the treatment of compound comminuted depressed fracture (FCCD) after traumatic brain injury (TBI) and involves the removal of primarily damaged bone and subsequent cranioplasty. The main reason for delayed cranioplasty was to reduce the risk of infection-related complications. Here, the author performed immediate reconstruction using a titanium mesh in consecutive patients with FCCD after TBI, reported the surgical results, and reviewed previous studies. Methods : Nineteen consecutive patients who underwent single-stage reconstruction with titanium mesh for FCCD of the skull from April 2014 to June 2018 were retrospectively analyzed. The demographic and radiological characteristics of the patients with FCCD were investigated. The characteristics associated with surgery and outcome were also evaluated. Results : The frequency of TBI in men (94.7%) was significantly higher than that in women. Most FCCDs (73.7%) occurred during work, the rest were caused by traffic accidents. The mean interval between TBI and surgery was 7.0±3.9 hours. The median Glasgow coma scale score was 15 (range, 8-15) at admission and 15 (range, 10-15) at discharge. FCCD was frequently located in the frontal (57.9%) and parietal (31.6%) bones than in other regions. Of the patients with FCCDs in the frontal bone, 62.5% had paranasal sinus injury. There were five patients with fractures of orbital bone, and they were easily reconstructed using titanium mesh. These patients were cosmetically satisfied. Postoperatively, antibiotics were used for an average of 12.6 days. The mean hospital stay was 17.6±7.5 days (range, 8-33). There was no postoperative seizure or complications, such as infection. Conclusion : Immediate bony fragments replacement and reconstruction with reconstruction titanium mesh for FCCD did not increase infectious sequelae, even though FCCD involved sinus. This suggests that immediate single-stage reconstruction with titanium mesh for FCCD is a suitable surgical option with potential benefits in terms of cost-effectiveness, safety, and cosmetic and psychological outcomes.

Introduction of Globally Harmonized System for Agrochemical Products (농약제품을 위한 GHS 제도 도입)

  • Jeong, Sang-Hee;Park, Cheol-Beom;Han, Bum-Seok;Kang, Chang-Soo;Jeong, Mi-Hye;Sung, Ha-Jung
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.2
    • /
    • pp.201-207
    • /
    • 2011
  • The use of chemical products to enhance and improve life is a widespread worldwide practice. In spite of the benefits of these products, there is the potential of chemicals for adverse effects to people or the environment. The globally harmonized system (GHS) of classifying and labeling chemicals that was recommended by the United Nations in 2003, has been introduced globally since 2008. Compare to the classification criteria of agricultural formulations today, classification criteria of GHS is different partly. One pictogram is removed and 3 pictograms are introduced newly. The classification criteria of GHS will be changed preferentially and implemented gradationally to hazard products.

An Experimental Study on Scout Area around Groynes with Permeability and Install Angle (투과율과 설치각도에 대한 수제주변 세굴영역에 관한 실험 연구)

  • Yeo Hong-Koo;Kang Joon-Gu;Kim Sung-Jung;Rho Young-Sin
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.7 s.168
    • /
    • pp.583-592
    • /
    • 2006
  • There has been debated on the fact that a scour hole produced by the construction of a groyne has environmental benefits such as provision of diverse underwater habitats and shelter for fish in the event of flooding. Therefore researches are focusing on the scour field around the groyne area beyond the existing safety issues. The scour area on aquatic habitats would format many form on groyne conditions so that the analysis of scour area is strongly required. This study conducted the experiments on permeability and installation angle of groyne and suggested the data for groyne selection in environmental point as analyzing scour area. The physical modeling was performed in different permeability (0%, 20%, 40%, 60%, 80%) and installation angle of groyne ($60^{\circ},\;90^{\circ},\;120^{\circ}$). As the result of the study, scour area and scour depth at maximum scour condition was revealed for each case and suggested the differences according to experiment conditions.

Assessment of Preemption Signal Control Strategy for Emergency Vehicles in Korea (국내 긴급차량 우선신호(preemption) 제어 적용성 평가에 관한 연구)

  • Yang, Lyun-Ho;Lee, Sang-Soo;Oh, Young-Tae
    • Journal of Korean Society of Transportation
    • /
    • v.26 no.5
    • /
    • pp.63-72
    • /
    • 2008
  • Signalized intersections are operated without a signal preemption control strategy in Korea, thus there is no priority treatment for an emergency vehicle passing through the intersections. In this paper, a signal preemption control strategy is introduced to improve the safety and operational efficiency of an emergency vehicle. Using the micro simulation tool, the effects on delay and travel speed of the signal preemption control strategy are analyzed for various traffic conditions to identify the general performance trends. Then, another simulation analysis is performed to verify the feasibility of the control strategy using real network data collected from field study. Results show that the preemption control strategy provides the positive impact on emergency vehicles' operation, but the positive impact is reduced as the v/c ratios increase. As expected, the average delays of the normal vehicles are slightly increased, but the magnitude is not significant. Therefore, it is expected that the introduction of the preemption control strategy in Korea would produce the positive social benefits.

The improvement effect of anti-inflammation of Aronia extract that fermented by Lactic acid bacteria isolated from the fermented seafoods

  • Lim, Jeong-Muk;Choi, Ui-Lim;Lee, Jeong-Ho;Moon, Kwang Hyun;Kim, Dae Geun;Jeong, Kyung Ok;Im, So Yeon;Oh, Byung-Taek
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.111-111
    • /
    • 2018
  • Aronia (black chokeberry), a species of berries is source to a very large number of bioactive compounds like polyphenols, flavonoids, anthocyanins, and tannins in comparison to any other species. Owing to its antioxidant, anti-carcinogenic, anti-aging and anti-inflammatory properties. Fermentation- a bioconversion process exploiting the biological metabolic reaction of micro-organisms, has several benefits like improving the efficacy and safety of physiologically active substances, generation of new functional material, improving the adsorption rate and many others. Antigens like pathogens, food, pollen etc., generate a protective immune response in body tissues, and the process be referred to as inflammation. However, this when excessive results in a condition referred to as refractory inflammatory disease, whose incidence is increasing in the recent times, especially amongst children. The current study intended to assess the anti-oxidant activity, presence of polyphenols and anti-inflammatory efficacy of Aronia extract fermented by Lactic acid bacteria isolated from fermented sea foods. Aronia fruits collected from Sunchang, Chonbuk were lyophilized for fermentation. So as to maximise the efficacy of the fermented Aronia extract, the quantitative effects of lactic acid bacteria species, composition of extraction solution, influence of temperature and time on antioxidant activity and total polyphenol contents were investigated using an experimental design. Anti-inflammatory activity was evaluated on NO and cytokine ($TNF-{\alpha}$, IL-6) production in LPS activated Raw 264.7 cells. Results indicated that antioxidant effect and total polyphenol contents were best improved in extract of Aronia fermented by P. pentosaceus. In addition, NO and cytokine ($TNF-{\alpha}$, IL-6) levels were decreased significantly after fermentation. Thus, it was found that the anti-inflammatory activity of Aronia greatly increased after fermentation process using P. pentosaceus.

  • PDF

New formulated "DOX-MTX-loaded Nanoparticles" Down-regulate HER2 Gene Expression and Improve the Clinical Outcome in OSCCs Model in Rat: the Effect of IV and Oral Modalities

  • Abbasi, Mehran Mesgari;Monfaredan, Amir;Hamishehkar, Hamed;Jahanban-Esfahlan, Rana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9355-9360
    • /
    • 2014
  • Background: Oral squamous cell carcinoma (OSCC) remains as one of the most difficult malignancies to control because of its high propensity for local invasion and cervical lymph node dissemination. In this study, we evaluate the efficacy of our novel pH and temperature sensitive doxorubicin-methotrexate-loaded nanoparticles (DOX-MTX NP) in affecting HER2 expression profile in OSCC model in rat. Results: DOX-MTX- nanoparticle complexes caused significant decrease in mRNA level of HER2 compared to untreated cancers (p<0.05) and this finding was more pronounced with the IV mode (p<0.000). Surprisingly, HER2 mRNA was not affected in DOX treated as compared to the control group (p>0.05). On the other hand, in the DOX-MTX NP treated group, fewer tumors characterized with advanced stage and decreased HER2 paralleled improved clinical outcome (P<0.05). Moreover, the effectiveness of the oral route in the group treated with nanodrug accounted for the enhanced bioavailability of nanoparticulated DOX-MTX compared to free DOX. Furthermore, there was no significant difference in mRNA level of HER2 (p>0.05). Conclusions: Influence of HER2 gene expression is a new feature and mechanism of action observed only in dual action DOX-MTX-NPs treated groups. Down-regulation of HER2 mRNA as a promising marker and prognosticator of OSCC adds to the cytotoxic benefits of DOX in its new formulation. Both oral and IV application of this nanodrug could be used, with no preferences in term of their safety or toxicity. As HER2 is expressed abundantly by a wide spectrum of tumors, i DOX-MTX NPs may be useful for a wide-spectrum of lesions. However, molecular mechanisms underlying HER2 down regulation induced by DOX-MTX NPs remain to be addressed.

Moringa oleifera Lam: Targeting Chemoprevention

  • Karim, Nurul Ashikin Abd;Ibrahim, Muhammad Din;Kntayya, Saie Brindha;Rukayadi, Yaya;Hamid, Hazrulizawati Abd;Razis, Ahmad Faizal Abdull
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.8
    • /
    • pp.3675-3686
    • /
    • 2016
  • Moringa oleifera Lam, family Moringaceae, is a perennial plant which is called various names, but is locally known in Malaysia as ''murungai'' or ''kelor''. Glucomoringin, a glucosinolate with from M. oleifera is a major secondary metabolite compound. The seeds and leaves of the plant are reported to have the highest amount of glucosinolates. M. oleifera is well known for its many uses health and benefits. It is claimed to have nutritional, medicinal and chemopreventive potentials. Chemopreventive effects of M. oleifera are expected due to the existence of glucosinolate which it is reported to have the ability to induce apoptosis in anticancer studies. Furthermore, chemopreventive value of M. oleifera has been demonstrated in studies utilizing its leaf extract to inhibit the growth of human cancer cell lines. This review highlights the advantages of M. oleifera targeting chemoprevention where glucosinolates could help to slow the process of carcinogenesis through several molecular targets. It is also includes inhibition of carcinogen activation and induction of carcinogen detoxification, anti-inflammatory, anti-tumor cell proliferation, induction of apoptosis and inhibition of tumor angiogenesis. Finally, for synergistic effects of M. oleifera with other drugs and safety, essential for chemoprevention, it is important that it safe to be consumed by human body and works well. Although there is promising evidence about M. oleifera in chemoprevention, extensive research need to be done due to the expected rise of cancer in coming years and to gain more information about the mechanisms involved in M. oleifera influence, which could be a good source to inhibit several major mechanisms involved in cancer development.

3-D Hetero-Integration Technologies for Multifunctional Convergence Systems

  • Lee, Kang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.2
    • /
    • pp.11-19
    • /
    • 2015
  • Since CMOS device scaling has stalled, three-dimensional (3-D) integration allows extending Moore's law to ever high density, higher functionality, higher performance, and more diversed materials and devices to be integrated with lower cost. 3-D integration has many benefits such as increased multi-functionality, increased performance, increased data bandwidth, reduced power, small form factor, reduced packaging volume, because it vertically stacks multiple materials, technologies, and functional components such as processor, memory, sensors, logic, analog, and power ICs into one stacked chip. Anticipated applications start with memory, handheld devices, and high-performance computers and especially extend to multifunctional convengence systems such as cloud networking for internet of things, exascale computing for big data server, electrical vehicle system for future automotive, radioactivity safety system, energy harvesting system and, wireless implantable medical system by flexible heterogeneous integrations involving CMOS, MEMS, sensors and photonic circuits. However, heterogeneous integration of different functional devices has many technical challenges owing to various types of size, thickness, and substrate of different functional devices, because they were fabricated by different technologies. This paper describes new 3-D heterogeneous integration technologies of chip self-assembling stacking and 3-D heterogeneous opto-electronics integration, backside TSV fabrication developed by Tohoku University for multifunctional convergence systems. The paper introduce a high speed sensing, highly parallel processing image sensor system comprising a 3-D stacked image sensor with extremely fast signal sensing and processing speed and a 3-D stacked microprocessor with a self-test and self-repair function for autonomous driving assist fabricated by 3-D heterogeneous integration technologies.

Development and testing of multicomponent fuel cladding with enhanced accidental performance

  • Krejci, Jakub;Kabatova, Jitka;Manoch, Frantisek;Koci, Jan;Cvrcek, Ladislav;Malek, Jaroslav;Krum, Stanislav;Sutta, Pavel;Bublikova, Petra;Halodova, Patricie;Namburi, Hygreeva Kiran;Sevecek, Martin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.597-609
    • /
    • 2020
  • Accident Tolerant Fuels have been widely studied since the Fukushima-Daiichi accident in 2011 as one of the options on how to further enhance the safety of nuclear power plants. Deposition of protective coatings on nuclear fuel claddings has been considered as a near-term concept that will reduce the high-temperature oxidation rate and enhance accidental tolerance of the cladding while providing additional benefits during normal operation and transients. This study focuses on experimental testing of Zr-based alloys coated with Cr-based coatings using Physical Vapour Deposition. The results of long-term corrosion tests, as well as tests simulating postulated accidents, are presented. Zr-1%Nb alloy used as nuclear fuel cladding serves as a substrate and Cr, CrN, CrxNy layers are deposited by unbalanced magnetron sputtering and reactive magnetron sputtering. The deposition procedures are optimized in order to improve coating properties. Coated as well as reference uncoated samples were experimentally tested. The presented results include standard long-term corrosion tests at 360℃ in WWER water chemistry, burst (creep) tests and mainly single and double-sided high-temperature steam oxidation tests between 1000 and 1400℃ related to postulated Loss-of-coolant accident and Design extension conditions. Coated and reference samples were characterized pre- and post-testing using mechanical testing (microhardness, ring compression test), Thermal Evolved Gas Analysis analysis (hydrogen, oxygen concentration), optical microscopy, scanning electron microscopy (EDS, WDS, EBSD) and X-ray diffraction.