• Title/Summary/Keyword: sSOI

Search Result 156, Processing Time 0.024 seconds

Single Crystal Silicon Thin Film Transistor using 501 Wafer for the Switching Device of Top Emission Type AMOLEDs (SOI 웨이퍼를 이용한 Top emission 방식 AMOLEDs의 스위칭 소자용 단결정 실리콘 트랜지스터)

  • Chang, Jae-Won;Kim, Hoon;Shin, Kyeong-Sik;Kim, Jai-Kyeong;Ju, Byeong-Kwon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.4
    • /
    • pp.292-297
    • /
    • 2003
  • We fabricated a single crystal silicon thin film transistor for active matrix organic light emitting displays(AMOLEDs) using silicon on insulator wafer (SOI wafer). Poly crystal silicon thin film transistor(poly-Si TFT) Is actively researched and developed nowsdays for a pixel switching devices of AMOLEDs. However, poly-Si TFT has some disadvantages such as high off-state leakage currents and low field-effect mobility due to a trap of grain boundary in active channel. While single crystal silicon TFT has many advantages such as high field effect mobility, low off-state leakage currents, low power consumption because of the low threshold voltage and simultaneous integration of driving ICs on a substrate. In our experiment, we compared the property of poly-Si TFT with that of SOI TFT. Poly-Si TFT exhibited a field effect mobility of 34 $\textrm{cm}^2$/Vs, an off-state leakage current of about l${\times}$10$\^$-9/ A at the gate voltage of 10 V, a subthreshold slope of 0.5 V/dec and on/off ratio of 10$\^$-4/, a threshold voltage of 7.8 V. Otherwise, single crystal silicon TFT on SOI wafer exhibited a field effect mobility of 750 $\textrm{cm}^2$/Vs, an off-state leakage current of about 1${\times}$10$\^$-10/ A at the gate voltage of 10 V, a subthreshold slope of 0.59 V/dec and on/off ratio of 10$\^$7/, a threshold voltage of 6.75 V. So, we observed that the properties of single crystal silicon TFT using SOI wafer are better than those of Poly Si TFT. For the pixel driver in AMOLEDs, the best suitable pixel driver is single crystal silicon TFT using SOI wafer.

Impact of Segregation Layer on Scalability and Analog/RF Performance of Nanoscale Schottky Barrier SOI MOSFET

  • Patil, Ganesh C.;Qureshi, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • In this paper, the impact of segregation layer density ($N_{DSL}$) and length ($L_{DSL}$) on scalability and analog/RF performance of dopant-segregated Schottky barrier (DSSB) SOI MOSFET has been investigated in sub-30 nm regime. It has been found that, although by increasing the $N_{DSL}$ the increased off-state leakage, short-channel effects and the parasitic capacitances limits the scalability, the reduced Schottky barrier width at source-to-channel interface improves the analog/RF figures of merit of this device. Moreover, although by reducing the $L_{DSL}$ the increased voltage drop across the underlap length reduces the drive current, the increased effective channel length improves the scalability of this device. Further, the gain-bandwidth product in a common-source amplifier based on optimized DSSB SOI MOSFET has improved by ~40% over an amplifier based on raised source/drain ultrathin-body SOI MOSFET. Thus, optimizing $N_{DSL}$ and $L_{DSL}$ of DSSB SOI MOSFET makes it a suitable candidate for future nanoscale analog/RF circuits.

Design of a New Smart Power ICs based on the Partial SOI Technology for High Speed & High Voltage Applications (Partial SOI 기판을 이용한 고속-고전압 Smart Power 소자설계 및 전기적 특성에 관한 연구)

  • Choi, Chul;Koo, Yong-Seo;An, Chul
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.249-252
    • /
    • 2000
  • A new Smart rower IC's based on the Partial SOI technology was designed for such applications as mobile communication systems, high-speed HDD systems etc. A new methodology of integrating a 0.8${\mu}{\textrm}{m}$ BiCMOS compatible Smart Power technology, high voltage bipolar device, high speed SAVEN bipolar device, LDD NMOSFET and a new LDMOSFET based on the Partial SOI technology is presented in this paper. The high voltage bipolar device has a breakdown voltage of 40V for the output stage of analog circuit. The optimized Partial SOI LDMOSFET has an off-state breakdown voltage of 75 V and a specific on- resistance of 0.249mΩ.$\textrm{cm}^2$ with the drift region length of 3.5${\mu}{\textrm}{m}$. The high-speed SAVEN bipolar device shows cut-off frequency of about 21㎓. The simulator DIOS and DESSIS has been used to get these results.

  • PDF

Analytical Characterization of a Dual-Material Double-Gate Fully-Depleted SOI MOSFET with Pearson-IV type Doping Distribution

  • Kushwaha, Alok;Pandey, Manoj K.;Pandey, Sujata;Gupta, Anil K.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.7 no.2
    • /
    • pp.110-119
    • /
    • 2007
  • A new two-dimensional analytical model for dual-material double-gate fully-depleted SOI MOSFET with Pearson-IV type Doping Distribution is presented. An investigation of electrical MOSFET parameters i.e. drain current, transconductance, channel resistance and device capacitance in DM DG FD SOI MOSFET is carried out with Pearson-IV type doping distribution as it is essential to establish proper profiles to get the optimum performance of the device. These parameters are categorically derived keeping view of potential at the center (${\phi}_c$) of the double gate SOI MOSFET as it is more sensitive than the potential at the surface (${\phi}_s$). The proposed structure is such that the work function of the gate material (both sides) near the source is higher than the one near the drain. This work demonstrates the benefits of high performance proposed structure over their single material gate counterparts. The results predicted by the model are compared with those obtained by 2D device simulator ATLAS to verify the accuracy of the proposed model.

Small signal model and parameter extraction of SOI MOSFET's (SOI MOSFET's의 소신호 등가 모델과 변수 추출)

  • Lee, Byung-Jin;Park, Sung-Wook;Ohm, Woo-Yong
    • 전자공학회논문지 IE
    • /
    • v.44 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The increasing high frequency capabilities of CMOS have resulted in increased RF and analog design in CMOS. Design of RF and analog circuits depends critically on device S-parameter characteristics, magnitude of real and imaginary components and their behavior as a function of frequency. Utilization of scaled high performance CMOS technologies poses challenges as concerns for reliability degradation mechanisms increase. It is important to understand and quantify the effects of the reliability degradation mechanisms on the S-parameters and in turn on small signal model parameters. Various physical effects influencing small-signal parameters, especially the transconductance and capacitances and their degradation dependence, are discussed in detail. The measured S-parameters of H-gate and T-gate devices in a frequency range from 0.5GHz to 40GHz. All intrinsic and extrinsic parameters are extracted from S-parameters measurements at a single bias point in saturation. In this paper we discuss the analysis of the small signal equivalent circuits of RF SOI MOSFET's verificated for the purpose of exacting the change of parameter of small signal equivalent model followed by device flame.

Characteristics silicon pressure sensor using dry etching technology (건식식각 기술 이용한 실리콘 압력센서의 특성)

  • Woo, Dong-Kyun;Lee, Kyung-Il;Kim, Heung-Rak;Suh, Ho-Cheol;Lee, Young-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.137-141
    • /
    • 2010
  • In this paper, we fabricated silicon piezoresistive pressure sensor with dry etching technology which used Deep-RIE and etching delay technology which used SOI(silicon-on-insulator) wafer. We improved pressure sensor offset and its temperature dependence by removing oxidation layer of SOI wafer which was used for dry etching delay layer. Sensitivity of the fabricated pressure sensor was about 0.56 mV/V${\cdot}$kPa at 10 kPa full-scale, and nonlinearity of the fabricated pressure sensor was less than 2 %F.S. The zero off-set change rate was less than 0.6 %F.S.

A Study on the SOI RESURF LDMOS with a Taper Oxide on the Drain (경사진 드레인 산화막을 갖는 SOI RESURF LDMOS에 관한 연구)

  • Park, Il-Yong;Kim, Sung-Lyong;Choi, Yearn-Ik;Han, Min-Koo
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1606-1608
    • /
    • 1996
  • An the SOI RESURF LDMOS with a taper oxide on the drain is proposed and verified by the device simulator, MEDICI. Simulation results on the proposed LDMOS exhibits the increase in the breakdown voltage by 12 % and reduction in the drift region length by 25 %.

  • PDF

Electrical properties of SOI n-MOSFET's under nonisothermal lattice temperature (격자온도 불균일 조건에서 SOI n-MOSFET의 전기적 특성)

  • 김진양;박영준;민홍식
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.3
    • /
    • pp.89-95
    • /
    • 1996
  • In this ppaer, temeprature dependent transport and heat transport models have been incorperated to the two dimensional device simulator SNU-2D provides a solid bse for nonisothermal device simulation. As an example to study the nonisothermal problem. we consider SOI MOSFET's I-V characteristics have been simulated and compared with the measurements. It is shown that negative slopes in the Ids-Vds characteristics are casused by the temperature dependence of the saturation velocity and the degradation of the temperature dependence mobility. Also it is shown that the kink effect occurs when impact ionization near the drain produces a buildup of holes in this isolated device island, and the hysteresis is caused by the creation of holes in the channel and their flow to the source.

  • PDF

Hurst's memory for SOI and tree-ring series (남방진동지수, 나이테 자료에 대한 허스트 기억)

  • Kim Byung Sik;Kim Hung Soo;Seoh Byung Ha;Yoon Kang Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.792-796
    • /
    • 2005
  • The methods of times series analysis have been recognized as important tools for assisting in solving problems related to the management of water resources. Especially, After more than 40 years the so-called Hurst effect remains an open problem in stochastic hydrology. Until now, its existence has been explained fly R/S analysis that roots in early work of the British hydrologist H.E. Hurst(1951). Today, the Hurst analysis is mostly used for the hydrological studies for memory and characteristics of time series and many methodologies have been developed for the analysis. So, there are many different techniques for the estimation of the Hurst exponent(H). However, the techniques can produce different characteristics for the persistence of a time series each other. We found that DFA is the most appropriate technique for the Hurst exponent estimation for both the shot term memory and long term memory. We analyze the SOI(Southern Oscillations Index) and 6 tree-ring series for USA sites by means of DFA and the BDS statistic is used for nonlinearity test of the series. From the results, we found that SOI series is nonlinear time series which has a long term memory of H=0.92. Contrary to earlier work of Rao(1999), all the tree- ring series are not random from our analysis. A certain tree ring series show a long term memory of H=0.97 and nonlinear property. Therefore, we can say that the SOI and tree-ring series may show long memory and nonlinearity.

  • PDF

Effect of Design Parameters on the Efficiency of the Solar Cells Fabricated Using SOI Structure (SOI 구조 이용한 결정질 규소 태양전지의 최적설계)

  • Lee, Gang-Min;Kim, Yeong-Gwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.890-895
    • /
    • 1999
  • The recent important issue in solar cell fabrication is to adopt thin film silicon solar cells on cheap substrates. However, thin cells demand new grid design concept that all the contacts(to the emitter and base) be located on the front surface. Hence, the aim of the investigation presented in this paper was to determine the potential and the basic limitation of the design. With this concept, an interdigitated front grid structure was realized and cells were fabricated through a set of photolithography processes. Confirmed efficiencies of up to 11.5% were achieved on bonded SOI wafers with a cell thickness of 50$\mu\textrm{m}$ in the case of finger spacing more than $\mu\textrm{m}$ and a base width of 35$\mu\textrm{m}$. It was also shown from the results that the design rules for optimizing the base fraction and reducing the shadowing fraction are noted as an important technique to realize high-efficiency thin silicon solar cells.

  • PDF