• Title/Summary/Keyword: s-PDMS

Search Result 252, Processing Time 0.028 seconds

Micromolding process using PDMS for refractive microlens (Micromolding process에 의한 refractive microlens의 제작)

  • Ahn, Si-Hong;Lee, Sang-Ho;Kim, Min-Soo;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2000.11c
    • /
    • pp.578-580
    • /
    • 2000
  • Micromolding process에 의한 refractive microlens array를 제작한다. PDMS, UV curable acryl adhesive 등 여러 가지 polymer 재료를 시도한다. 기존의 공장에서 주로 사용되던 etched bulk silicon, electroplated metal 등의 구조물이 아닌, polymer 구조물을 mold로 사용한다. Micromolding process에 의해 제작되는 microlens의 특성은 mold의 험상에 의해 결정된다. Reflow 공정에 의해 제작된 photoresist microlens는 매우 우수한 표면 특성과 형상 대칭성을 보여주므로, microlens의 mold로서 사용하기에 적합하다.

  • PDF

Fabrication of Nano-filter Device for High Efficient Separation and Concentration of Biomolecules (고효율 바이오물질 분리 및 농축을 위한 나노필터소자제작)

  • Huh, Yun Suk;Choi, Bong Gill;Hong, Won Hi
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.738-742
    • /
    • 2012
  • Here, we develop a new nanofilter device for the rapid and efficient separation of nanoparticles and biomolecules, exploiting the use of AAO mebrane with ordered nanopores in the range from 20 nm to 200 nm. Briefly, the chip comprises of a series of the upper and lower PDMS channels containing embedded inlet and outlet ports, and $50{\mu}m$ width microfluidic channel, and AAO membrane to be made the filtering zone. After assembling these components, the acrylate plastic plates were used to fix the device on the top and bottom side. When introducing the samples into the inlet ports of the upper PDMS channel, we were able to separate and concentrate the nanoparticles and target molecules at the filtering zone, and to elute the solutions containing the unwanted materials toward the lower PDMS channels normal to the direction of AAO membrane. To demonstrate the usefulness of the device we apply it to the SERS detection of nucleic acid sequences associated with Dengue virus serotype 2. We report a limit of detection for Dengue sequences of 300 nM and show excellent enhancement of Raman signals from the filter zone of the nanofilter device.

Feasibility Study for a Lab-chip Development for LAL Test (LAL 시험용 Lab-chip 개발을 위한 타당성 연구)

  • 황상연;최효진;서창우;안유민;김양선;이은규
    • KSBB Journal
    • /
    • v.18 no.5
    • /
    • pp.429-433
    • /
    • 2003
  • LAL (Limulus amebocyte lysate) test to detect and quantity endotoxin is based on gellation reaction between endotoxin and LAL from a blood extract of Limulus polyphemus. The test is labor intensive requiring dedicated personnel, takes relatively long reaction time (approximately 1 hr), requires relatively large volume of samples and reagents, and its end-point detection method is rather subjective. To solve these problems, we attempted to develop a miniaturized LOC (lab-on-a-chip) prototype using PDMS and glass. Using the 62 mm (length) ${\times}$ 18 mm (width) prototype in which 2 mm (width) ${\times}$ 44.34 mm (length) ${\times}$ 100 $\mu\textrm{m}$ (depth) microfluidic channel was provided, we compared the various detection methods of gellation, turbidometric, and chromogenic assays to find the chromogenic method to be the most suitable for small volume assay. In this assay, kinetic point method was more accurate than end point method. We also found the PDMS chip thickness should be minimized to around 2 mm to allow sufficient light transmittance, which necessitated a glass slide bonding for chip rigidity. Through the miniaturization, the test time was reduced from 1 hr to less than 10 minutes, and the sample volume could be reduced from 100 ${\mu}\ell$ to 4.4 ${\mu}\ell$. In sum, this study revealed that the mini LOC could be an alternative for a semi-automated and reliable method for LAL test.

Micro-LED Mass Transfer using a Vacuum Chuck (진공 척을 이용한 마이크로 LED 대량 전사 공정 개발)

  • Kim, Injoo;Kim, Yonghwa;Cho, Younghak;Kim, Sungdong
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.29 no.2
    • /
    • pp.121-127
    • /
    • 2022
  • Micro-LED is a light-emitting diode smaller than 100 ㎛ in size. It attracts much attention due to its superior performance, such as resolution, brightness, etc., and is considered for various applications like flexible display and VR/AR. Micro-LED display requires a mass transfer process to move micro-LED chips from a LED wafer to a target substrate. In this study, we proposed a vacuum chuck method as a mass transfer technique. The vacuum chuck was fabricated with MEMS technology and PDMS micro-mold process. The spin-coating approach using a dam structure successfully controlled the PDMS mold's thickness. The vacuum test using solder balls instead of micro-LED confirmed the vacuum chuck method as a mass transfer technique.

Research on the Manufacturing Technology for a PDMS Structure-Based Transpiration Generator Using Biomimetic Capillary Phenomenon (생체모방 모세관 현상을 이용한 PDMS 구조체 기반 증산발전기 제조기술 연구)

  • Seung-Hwan Lee;Jeungjai Yun;So Hyun Baek;Yongbum Kwon;Yoseb Song;Bum Sung Kim;Yong-Ho Choa;Da-Woon Jeong
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.268-275
    • /
    • 2023
  • The demand for energy is steadily rising because of rapid population growth and improvements in living standards. Consequently, extensive research is being conducted worldwide to enhance the energy supply. Transpiration power generation technology utilizes the vast availability of water, which encompasses more than 70% of the Earth's surface, offering the unique advantage of minimal temporal and spatial constraints over other forms of power generation. Various principles are involved in water-based energy harvesting. In this study, we focused on explaining the generation of energy through the streaming potential within the generator component. The generator was fabricated using sugar cubes, PDMS, carbon black, CTAB, and DI water. In addition, a straightforward and rapid manufacturing method for the generator was proposed. The PDMS generator developed in this study exhibits high performance with a voltage of 29.6 mV and a current of 8.29 µA and can generate power for over 40h. This study contributes to the future development of generators that can achieve high performance and long-term power generation.

PDMS Surface Modification with HDMA Grafting Using Ozone for Prolonging Hydrophilicity Lifetime (장기간 친수성 유지를 위해 오존을 이용하여 HEMA 처리한 PDMS의 표면 개질)

  • Kim, Sang-Cheol;Jang, Byeong-Hyeon;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.2096-2098
    • /
    • 2004
  • 본 논문은 마이크로 유체 소자의 소재로서 많이 쓰이고 있는 poly(dimethyl-siloxane) (PDMS)의 친수성 유지를 위한 표면 개질에 대한 연구이다. PDMS는 유연성, 투명성 등의 다양한 장점을 가지고 있으나, 높은 소수성으로 인하여 유체 소자로의 응용에 제한을 갖는다. 기존 연구에서 수행한 산소 플라즈마 후 2-Hydroxyethyl methacrylate (HEMA) 처리에 의한 PDMS의 표면 개질은 친수성 유지 시간에 한계가 있었다. 이에 친수성 유지 시간을 증가시키기 위하여 경화된 PDMS에 두 시간의 오존 처리 후, 6시간 동안 monomethyl ether hydroquinone (MEHQ)가 제거된 HEMA로 표면을 개질한다. 표면 처리된 PDMS의 친수성 특성을 확인하기 위해 접촉각을 측정하였다. 측정 결과, 오존을 이용하였을 때 $60^{\circ}$ 이하의 낮은 접촉각이 900시간 이상 유지됨을 확인하였다.

  • PDF

Fabrication of Organic Thin Film Transistor(OTFT) for Flexible Display by using Microcontact Printing Process (미세접촉프린팅공정을 이용한 플렉시블 디스플레이 유기박막구동소자 제작)

  • Kim K.Y.;Jo Jeong-Dai;Kim D.S.;Lee J.H.;Lee E.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.595-596
    • /
    • 2006
  • The flexible organic thin film transistor (OTFT) array to use as a switching device for an organic light emitting diode (OLED) was designed and fabricated in the microcontact printing and low-temperature processes. The gate, source, and drain electrode patterns of OTFT were fabricated by microcontact printing which is high-resolution lithography technology using polydimethylsiloxane(PDMS) stamp. The OTFT array with dielectric layer and organic active semiconductor layers formed at room temperature or at a temperature tower than $40^{\circ}C$. The microcontact printing process using SAM(self-assembled monolayer) and PDMS stamp made it possible to fabricate OTFT arrays with channel lengths down to even nano size, and reduced the procedure by 10 steps compared with photolithography. Since the process was done in low temperature, there was no pattern transformation and bending problem appeared. It was possible to increase close packing of molecules by SAM, to improve electric field mobility, to decrease contact resistance, and to reduce threshold voltage by using a big dielecric.

  • PDF

Poly(dimethylsiloxane) Mini-disk Extraction

  • Cha, Eun-Ju;Lee, Dong-Sun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.10
    • /
    • pp.3603-3609
    • /
    • 2011
  • A novel sampling method of the headspace poly(dimethylsiloxane) (PDMS) mini-disk extraction (HS-PDE) was developed, optimized, validated and applied for the GC/MS analysis of spices flavors. A prototype PDMS mini-disk (8 mm outer diameter, 0.157 mm thickness, 9.4 mg weight) has been designed and fabricated as a sorption device. The technique uses a small PDMS mini-disk and very small volume of organic solvent and less sample size than the solvent extraction. This new HS-PDE method is very simple to use, inexpensive, rapid, requires less labor. Linearities of calibration curves for ${\alpha}$-pinene, ${\beta}$-pinene, limonene and ${\gamma}$-terpinene by HS-PDE combined with GC/MS were excellent having $r^2$ values greater than 0.99 at the dynamic range of 6.06~3500 ng/mL. The limit of detection (LOD) and the limit of quantitation (LOQ) showed very low values. This method exhibited good precision and accuracy. The overall extraction efficiency of this method was evaluated by using partition coefficients ($K_p$) and concentration factors (CF) for several characteristic components from nutmeg and mace. Partition coefficients were in the range from $2.04{\times}10^4$ to $4.42{\times}10^5$, while CF values were 0.88-15.03. HS-PDE was applied successfully for the analysis of flavors compositions from nutmeg, mace and cumin. The HS-PDE method is a very promising sampling technique for the characterization of volatile flavors.

Optoacoustic Ultrasound Generator Based on Nanostructured Germanium (광음향효과를 이용한 게르마늄 나노구조 기반의 초음파 발생 소자 연구)

  • Yoon, Sang-Hyuk;Heo, Junseok
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.5
    • /
    • pp.255-260
    • /
    • 2015
  • We have fabricated an optoacoustic ultrasound generator based on nanostructured germanium (Ge). Ge thin films were deposited via e-beam evaporation and then etched using a metal-assisted chemical (MAC) method to form nanostructured Ge films. The measured intensity of ultrasound from the nanostructured Ge covered with PDMS was about 3 times stronger than that of 100-nm-thick chromium (Cr). When the nanostructured Ge was embedded in the PDMS, the intensity of ultrasound became 8.5 times as strong compared to the 100-nm-thick Cr.

The bonding properties of PDMS - substrate by oxygen plasma treatment ($O_2$ 플라즈마로 표면 처리된 PDMS의 접합특성)

  • Yoo, Kum-Pyo;Kang, Moon-Sik;Pyo, Seong-Yeol;Hong, Suk-In;Min, Nam-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1914-1916
    • /
    • 2003
  • 최근 PDMS를 이용한 미세구조물의 제작을 통한 LOC(lap-on-a-chip) 개발에 대한 연구가 많이 진행되고 있다. 본 연구에서는 PDMS와 여러기판(유리와 실리콘) 사이의 접합 공정에 관한 연구를 하였으며, 특히 PDMS 표면의 물리적, 화학적 변화와 접합 특성과의 관계를 고찰하였다. $O_2$ 플라즈마를 사용하여 표면 처리된 기판의 표면에너지를 접촉각 측정방식으로 측정하였다. 또한 XPS를 이용하여 표면의 화학조성 변화 관찰하였으며, AFM으로 플라즈마 도즈량에 따른 표면 거칠기를 조사하였다.

  • PDF