• Title/Summary/Keyword: s modulus tensile properties

Search Result 295, Processing Time 0.029 seconds

Machine learning techniques for prediction of ultimate strain of FRP-confined concrete

  • Tijani, Ibrahim A.;Lawal, Abiodun I.;Kwon, S.
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.101-111
    • /
    • 2022
  • It is widely known that axially loaded fiber-reinforced polymer (FRP) confined concrete presents significant and enhanced mechanical properties with reference to the unconfined concrete. Therefore, to predict the mechanical behavior of FRP-confined concrete two quantities-peak strength and ultimate strain are required. Despite the significant advances, the determination of the ultimate strain of FRP-confined concrete is one of the most challenging problems to be resolved. This is often attributed to our persistence in desiring the conventional methods as the sole technique to examine this phenomenon and the complex nature of the ultimate strain of FRP-confined concrete. To bridge the research gap, this study adopted two machine learning (ML) techniques-artificial neural network (ANN) and Gaussian process regression (GPR)-to analyze observations obtained from 627 datasets of FRP-confined concrete circular and non-circular sections under axial loading test. Besides, the techniques are also used to predict the ultimate strain of FRP-confined concrete. Seven parameters namely width/diameter of the specimens, corner radius ratio, the strength of concrete, FRP elastic modulus, FRP thickness, FRP tensile rupture strain, and the axial strain of unconfined concrete-are the input parameters used to predict the ultimate strain of FRP-confined concrete. The results of the current study highlight the merit of using AI techniques in structural engineering applications given their extraordinary ability to comprehend multidimensional phenomena of FRP-confined concrete structures with ease, low computational cost, and high performance over the existing empirical models.

A Prediction of Engineering Properties of Ulsan Sedimentary Rocks with Schmidt Hammer Rebound Number (Schmidt hammer 반발지수로 울산지역 퇴적암의 공학적 특성을 추정하기 위한 연구)

  • Min, Tuk-Ki;Moon, Jong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.10
    • /
    • pp.139-150
    • /
    • 2006
  • A study has been made of the Schmidt hammer rebound test for the estimation of engineering and physical characteristics of sedimentary rocks. As there is no universal formular for the estimation of rock strength due to geological conditions, in this study only sedimentary rocks are adopted to testing. The aim of study is to make the information more meaningful and useful for engineers and contractors by providing rapid, cheap and easy method. The obtained parameters were correlated and regression equations were established among Schmidt hammer rebound number, uniaxial compressive strength, tangent Young's modulus, indirect tensile stress, water absorption and porosity of rocks with high coefficients of correlation with each other.

Modeling cover cracking due to rebar corrosion in RC members

  • Allampallewar, Satish B.;Srividya, A.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.6
    • /
    • pp.713-732
    • /
    • 2008
  • Serviceability and durability of the concrete members can be seriously affected by the corrosion of steel rebar. Carbonation front and or chloride ingress can destroy the passive film on rebar and may set the corrosion (oxidation process). Depending on the level of oxidation (expansive corrosion products/rust) damage to the cover concrete takes place in the form of expansion, cracking and spalling or delamination. This makes the concrete unable to develop forces through bond and also become unprotected against further degradation from corrosion; and thus marks the end of service life for corrosion-affected structures. This paper presents an analytical model that predicts the weight loss of steel rebar and the corresponding time from onset of corrosion for the known corrosion rate and thus can be used for the determination of time to cover cracking in corrosion affected RC member. This model uses fully the thick-walled cylinder approach. The gradual crack propagation in radial directions (from inside) is considered when the circumferential tensile stresses at the inner surface of intact concrete have reached the tensile strength of concrete. The analysis is done separately with and without considering the stiffness of reinforcing steel and rust combine along with the assumption of zero residual strength of cracked concrete. The model accounts for the time required for corrosion products to fill a porous zone before they start inducing expansive pressure on the concrete surrounding the steel rebar. The capability of the model to produce the experimental trends is demonstrated by comparing the model's predictions with the results of experimental data published in the literature. The effect of considering the corroded reinforcing steel bar stiffness is demonstrated. A sensitivity analysis has also been carried out to show the influence of the various parameters. It has been found that material properties and their inter-relations significantly influence weight loss of rebar. Time to cover cracking from onset of corrosion for the same weight loss is influenced by corrosion rate and state of oxidation of corrosion product formed. Time to cover cracking from onset of corrosion is useful in making certain decisions pertaining to inspection, repair, rehabilitation, replacement and demolition of RC member/structure in corrosive environment.

Fabrication of Natural Fiber Composites through Hot Press and Analysis of Interfacial Adhesion (고온 프레스를 이용한 자연섬유 복합재료 제조와 계면 결합 분석)

  • Yi, Jin W.;Hwang, Byung S.;Lee, Jung H.;Nah, Chang W.
    • Journal of Adhesion and Interface
    • /
    • v.7 no.2
    • /
    • pp.26-31
    • /
    • 2006
  • In order to effectively improve interfacial adhesion strength between polypropylene (PP) and jute fiber, we particularly incorporated maleic anhydride grafted PP (MAPP) into the matrix through the environment-friendly process without an additional method of process and had better mechanical performances by providing the alignment into the natural fiber than those of the conventional fabrication technology such as an extrusion or injection molding. We also proposed hot pressing method which applied relatively low shear to the composites and confirmed the chemical bonds among the functional groups of MAPP and jute using FT-IR approach. The concentration of MAPP for maximum tensile strength and modulus was optimized at 3 wt%. Flexural properties had no noticeable tendency to increase with MAPP contents compared to tensile strength, which could probably be explained by the degree in wetting of PP/MAPP matrix.

  • PDF

Evaluation of Impact Energy Absorption Characteristics of Flexible Sand Asphalt Pavement for Pedestrian Way (보도용 연성 샌드 아스팔트 포장의 충격흡수 특성 평가)

  • Choi, Chang-jeong;Dong, Baesun;Kim, Kwang W.;Kim, Sungun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.61 no.3
    • /
    • pp.31-41
    • /
    • 2019
  • More than 90% of roadway in the world are paved as asphalt concrete pavement due to its excellent properties compared with other paving materials; excellent riding quality, flexibility, anti-icing property and easy maintenance-ability. In this study, to make best use of the softer property of the asphalt mixture, the flexible sand asphalt mixture (FSAM) was developed for pedestrian ways. The mix design was conducted to prepare FSAM using PG64-22 asphalt, screenings (sand) less than 5mm, crumb rubber, hydrated lime and limestone powder without coarse aggregate. The deformation strength ($S_D$), indirect tensile strength (ITS) and tensile strength ratio (TSR) tests were conducted to make sure durability of FSAM performance. The impact energy absorption and flexibility were measured by drop-boll test and the resilient modulus ($M_R$) test. The impact energy absorption of FSAM was compared with normal asphalt pavement, concrete pavement, stone and concrete block for pedestrian way. As a result of drop-boll test, FSAM showed higher impact energy absorption compared with other paving materials with the range of 18% to 43%. Impact energy absorption of FSAM increased with increasing test temperature from 5 to $40^{\circ}C$. The results of $M_R$ test at $5^{\circ}C$ showed that the flexibility of FSPA was increased further, because the $M_R$ value of the sand asphalt was measured to be 38% lower than normal dense-graded asphalt mixture (WC-1). Therefore, it was concluded that the FSAM could provide a high impact absorbing characteristics, which would improve walking quality of the pedestrian ways.

Studies on Fabrics woven with Silk/Polyester Compound Yarn (고치와 폴리에스텔 복합사 직물의 시직)

  • 김영대;김남정
    • Journal of Sericultural and Entomological Science
    • /
    • v.36 no.2
    • /
    • pp.147-151
    • /
    • 1994
  • This study was carried out investigate the characteristics of Habutae and Chiffon woven with silk and polyester(S/P) compound yarn. The S/P compound yarn could be produced by the automatic reeling machine with attachment of air jetting device, polyester yarn guider and tension control apparatus. The surface structure, tensile property and dyeing fastness of S/P compound fabric were examined for the fabric properties. Electron microscopy revealed that most part of S/P compound yarn was well interlaced and some silk part of compound yarn were hidden by polyester on an examination of surface of chiffon fabric. By the one bath and two step dyeing of disperse and acidic dyes, the colour fastness of S/P compound fabrics were 4 grade above. The tenacity and initial modulus of the finished S/P compound fabric were lower than those of grey and degummed fabrics, but reversed in elongation.

  • PDF

Estimation of Mechanical Properties for Particle Dispersed Composites (입자 분산 복합재료의 기계적 성질 추정)

  • Tak Jin Moon;Dae Soon Im
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.6
    • /
    • pp.414-420
    • /
    • 1982
  • The mechanical properties of nickel particle polyethylene composites were estimated by using a finite element method. Two steps were carried out in this analysis; the first step was to consider an unit model composed of spherical cell in the center of the matrix and the second step was to consider a total model composed of unit model. Two phase and three phase models were used, since another third phase were observed between matrix and nickel particle. Finite element method permits the calculation of the stress and displacement, assuming the arbitrary loads. Elastic modulus, Poisson's ratio and stress distribution of composites were obtained from this output. Comparison of the calculation by finite element method and the experimental results for Ni-filled polyethylene showed good agreement in tensile properties.

  • PDF

Properties of SBR Nanocomposites Reinforced with Organoclay/Carbon Black Dual Phase Fillers (카본 블랙/유기화 클레이로 보강된 SBR 나노 복합재료: 모폴로지와 기계적 물성)

  • Kang, B.S.;Kim, W.
    • Elastomers and Composites
    • /
    • v.42 no.1
    • /
    • pp.9-19
    • /
    • 2007
  • In this study, SBR (Styrene-butadiene rubber: solid content: 25 wt%) nanocomposites reinforced with carbon/organoclay(C18-MMT) were manufactured by a latex method. The SBR nanocomposites was made with the dual phase fillers. The mixing ratios, i.e. carbon black/C18-MMT, were 50/0, 49/1, 48/2, 47/3, 45/5, 44/6, 40/10. Total filler content of compounds was restricted to 50 phr. Cure characteristics and mechanical properties of SBR nanocomposites with carbon black and C18-MMT were evaluated. The SBR nanocomposites containing 49/1 ratio of carbon black/C18-MMT showed good dispersity and excellent values of ODR torque, tensile strength, modulus and tear energy. It was found that the improvement of the mechanical properties was mainly due to the reinforcing effect, i.e., the improvement of dispersion of silicates in the rubber matrix.

Creep Behavior of Plastics Used in Automobile Instrument Panels (자동차 인스트루먼트 패널에 사용되는 플라스틱의 크리프 거동)

  • Kim, Young-Sam;Jeon, Chi-Hoon;Tumur-Ochir, Erdenebat;Yum, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.12
    • /
    • pp.1549-1556
    • /
    • 2011
  • Tensile and creep tests were performed at various temperatures to investigate the mechanical properties of plastics used in automotive instrument panels. Mechanical properties such as Young's modulus and Poisson's ratios changed markedly with the test temperature. Three-point bending creep tests were performed for three kinds of plastics under four loading conditions. Coefficients in the time-hardening power law creep equation were obtained from the experiment, and the creep behavior was represented by a simple expression. The results of finite element creep analysis showed good agreement with the experimental results, while the difference between the numerical and experimental results increased with the load.

Thiazole Type Accelerator Effects on Silane/Silica Filled Natural Rubber Compound upon Vulcanization and Mechanical Properties (Thiazole계 가황촉진제가 실란/실리카 충전 천연고무 컴파운드의 가황 거동 및 기계적 물성에 미치는 영향)

  • Kim, Sung-Min;Kim, Kwang-Jea
    • Polymer(Korea)
    • /
    • v.36 no.2
    • /
    • pp.235-244
    • /
    • 2012
  • A thiazole type accelerator MBT (2-mercapto benzothiazole) was added into silica filled natural rubber (NR) compound with various concentrations (0, 1, 2, 3, 4 phr). The effects of MBT on the cure rate, mechanical property, degree of rubber-filler interaction (${\alpha}_F$), crosslinking density, and viscoelastic property ($tan{\delta}$) were investigated. As accelerator concentration increased, the $t_{s2}$ and $t_{90}$ decreased and the crosslinking density and modulus at 300% elongation increased. The tensile strength and elongation increased up to 3 phr and no further increased at 4 phr. The $tan{\delta}$ value measured at room temperature was higher than that of the $70^{\circ}C$. The ${\alpha}_F$ value was not affected by the addition of MBT. The mechanisms for the vulcanization rate were reviewed.