• Title/Summary/Keyword: s modulus tensile properties

Search Result 295, Processing Time 0.028 seconds

Effect of Coated Polypyrrole Content on the Properties of Polypyrrole Coated Fabrics (폴리피롤 코팅 직물의 성질에 미치는 폴리피롤 함량의 영향)

  • Son, Seong-Ho;Lee, Young-Hee;Lee, Dong-Jin;Kim, Sung Yeol;Kim, Han-Do
    • Textile Coloration and Finishing
    • /
    • v.28 no.2
    • /
    • pp.92-100
    • /
    • 2016
  • To chemically prepare polypyrrole(pPy) coated fabrics(silk, cotton and nylon fabrics), the fabrics were first soaked in 0.4M oxidant $FeCl_3$/0.06M dopant anthraquinone-2-sulfonic acid solution for 5min at room temperature, and subsequently soaked in a 0.4M monomer pyrrole aqueous solution for 5min at room temperature. The content(wt%) of coated pPy in the coated fabrics was controlled by the number of treatments(these two steps). This study examined the effect of the number of treatments/pPy content on the sheet resistance, mechanical/bending properties and color behaviors of pPy coated fabrics. The coated pPy content, sheet resistance(${\Omega}$/square) and color strength(K/S) of pPy coated fabrics increased sharply with increasing number of treatments up to 20 times, while the increase slowed down afterward. The tensile strength, elongation at break and lightness($L^*$) decreased with increasing number of treatments. The tensile modulus and bending rigidity of coated fabrics increased significantly with increasing number of treatments/coated pPy content. This indicated that the flexibility of coated fabrics decreased considerably.

The Effect of Electrolyte-coating on the Mechanical Performance of Carbon Fabric for Multifunctional Structural Batteries (다기능성 구조전지용 탄소섬유직물의 전해질 코팅이 기계적 성능에 미치는 효과)

  • Park, Hyun-Wook;Park, Mi-Young;Kim, Chun-Gon;Kim, Soo-Hyun
    • Composites Research
    • /
    • v.28 no.5
    • /
    • pp.285-290
    • /
    • 2015
  • Multiscale multiphysics in structural batteries make mechanical property testing difficult. In this research, the effect of electrolyte-coating on the mechanical performance of carbon fabric was studied using a suitable mechanical test method for structural batteries. For this experiment, two types of specimens were determined their dimension according to ASTM. One type of specimen was smaller than the standard dimension. The specimens were coated by spreading the electrolyte material on carbon fabric, hardened using epoxy, and tested for tensile properties using universal testing machine. As a result, it was found that the mechanical properties of carbon fabric were not influenced by electrolyte coating. In addition, the small-scale specimen used in this experiment was determined to be sufficiently reliable.

Improvement of Photo-stability for p-Aramid Fibers by SiO2/TiO2 Sol-Gel Method (SiO2/TiO2 sol-gel법을 이용한 p-아라미드 섬유의 내광성 증진)

  • Lee, Young-Il;Jung, Min-Hyuck;Lee, Mun-Cheul
    • Textile Coloration and Finishing
    • /
    • v.25 no.3
    • /
    • pp.172-180
    • /
    • 2013
  • Aramid fibers are being used increasingly in a wide range of application due to low density, high specific strength, high modulus, and high thermal resistance. But owing to its special physical and chemical structures, it is sensitive to absorb the ultraviolet light which will degrade the fiber's useful mechanical properties and structure. In this paper, the sol-gel technique was used to improve the photo-stability of p-aramid fibers. $TiO_2$, modified $SiO_2$/$TiO_2$ sol were used as coating solutions. The influence of the such coatings on the photo-stability of p-aramid fiber was investigated by an accelerated photo-ageing method using xenon lamp. The photo-stability of p-aramid fiber showed obvious improvement after the modified silica binding coating. But the amorphous $TiO_2$ sol coatings showed a negative effect. After 144h light exposure, the modified silane binder-coated fibers showed less degradation in mechanical properties with the retained tensile strength greater than about 70% of the original value.

Evaluation of mechanical properties and springback for embossed aluminum sheet - part I (엠보싱 알루미늄 판재의 기계적특성과 스프링백 평가 (제1보))

  • Kim, Young-Suk;Cho, Jun-Haeng;Do, Van-Cuong;Shin, Dong-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.921-926
    • /
    • 2015
  • Embossed aluminum sheets were been used in heat insulation purpose for automative exhaust parts because of increasing their surface areas and stiffness reinforcement. However, there are many restrictions because of high rate of wrinkle occurrence on press working. We have performed the tensile and bending tests for embossed sheets to clarity its mechanical properties and springback characteristics. Embossed aluminum sheets showed a different flow stress after plastic yielding due to flattening the embossed cone shape. Above all, yield stress of parallel embossed specimen decreases while its diagonal one increases and the decrease of young's modulus in the embossed sheets contributes to the increase of springback amount.

A Study on the Preparation of Wood-Polymer Composites with Recycled PE films (재활용 PE수지를 이용한 Wood-Polymer Composites 제조에 관한 연구)

  • Kim, Ryeun-Kwan;Kang, Min;Kim, Hea-Tae;Song, Byung-Sun;Yoon, Tae-Ho
    • Resources Recycling
    • /
    • v.8 no.4
    • /
    • pp.57-63
    • /
    • 1999
  • Wood-Polymer Composites (WPC) m s prepared irom recycled films of agricullural use and wood wastes, and LLDPE and neal PE resin mlxlurr war also utilized in order to cornpiue the praperlies. Molc~ca nhydride (MA) and dicumyl peroxide were used as an adheslon pmmoler and an il~lliatotor~, .espcmivelyT. ensile prapenies of W Cw zrc measured via lenslle test as a funclieu of woad lille~m d MA contmt, and rractu1.e surface was also mvestigaled wilh SEM. As the content of wwd tiller mcreased, clongauon deneased bul modulus increased However, tensile slrength OI WPC increased only when MA war used, and 1 wt.% of MA may be hgh enough to increase the tensile properties. The tensilc ptopcrlies af WPC prepwed from recycled PE films were &nost same as thosc of neal PE resin mixture.

  • PDF

Strength Increase of Medium Temperature-carbonized PAN Nano Fibers Made by Mechano-electrospinning

  • Kim, J.H.;Bajaj, B.;Yoon, S.J.;Kim, S.H.;Lee, J.R.
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.160-164
    • /
    • 2013
  • In this study, the effect of phosphoric acid (PA) as a fiber spinning aid on the strength increase of polyacrylonitrile (PAN) nano-fibers by using modified mechano-electrospinning technologies has been analyzed. The medium carbonization temperature of $800^{\circ}C$ has been selected for the future economic production of these new materials. The concentration of PAN in dimethyl sulfoxide (DMSO) was fixed as 5 wt%. The weight fraction of PA was selected as being 2%, 4%, 6%, and 8% in comparison to PAN. These solutions have been used to make the nanofibers. The mechano-electrospinning apparatus installed in KRICT was made by our own design. By using this apparatus the continous and highly aligned precursor nano-fibers have been obtained. The bundle of 50 well aligned nano diameter continuous fibers with the diametr of 10 microns with 6 wt% phosphoric acid for addition showed maximum mechanical properties of 1.6 GPa as tensile strength and 300 GPa as Young's modulus. The weight of final product can be increased 19%, which can improve the economical benefits for the application of these new materials.

Application of cold plasma treatment as a method to improve the physical properties of defatted mustard meal-based edible films (탈지 겨자씨 소재 가식성 필름의 물리적 특성 향상을 위한 콜드 플라즈마의 적용)

  • Jeong, Ha Eun;Oh, Yoon Ah;Min, Sea Cheol
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.5
    • /
    • pp.634-639
    • /
    • 2021
  • This study investigated the effects of cold plasma (CP) treatment on the properties of biopolymer films prepared with defatted mustard meal (DMM films). CP treatments using N2, O2, He, Ar, and dry air did not affect the tensile properties, water vapor permeability, color, and morphology of DMM films, whereas the treatments using He and Ar improved their printability. The tensile strength (TS) of O2- or air-CP-treated DMM films and the elastic modulus (EM) of O2-, He-, Ar-, or air-CP-treated films were lower than those of the untreated films. An increase in the power of Ar-CP treatment resulted in an increase in EM. The optimum treatment power and time for minimizing yellowness changes by Ar-CP treatment were 420 W and 40 min, respectively. The results demonstrated the potential application of CP treatment to improve the film properties of DMM films and possibly other agricultural by-product-based biopolymer films, making the films more applicable to food packaging.

Mechanical and Rheological Properties of Rice Plant (수도(水稻)의 역학적(力學的) 및 리올러지 특성(特性)에 관(關)한 연구(硏究))

  • Huh, Yun Kun;Cha, Gyun Do
    • Korean Journal of Agricultural Science
    • /
    • v.14 no.1
    • /
    • pp.98-133
    • /
    • 1987
  • The mechanical and rheological properties of agricultural materials are important for engineering design and analysis of their mechanical harvesting, handling, transporting and processing systems. Agricultural materials, which composed of structural members and fluids do not react in a purely elastic manner, and their response when subjected to stress and strain is a combination of elastic and viscous behavior so called viscoelastic behavior. Many researchers have conducted studies on the mechanical and rheological properties of the various agricultural products, but a few researcher has studied those properties of rice plant, and also those data are available only for foreign varieties of rice plant. This study are conducted to experimentally determine the mechanical and the rheological properties such as axial compressive strength, tensile strength, bending and shear strength, stress relaxation and creep behavior of rice stems, and grain detachment strength. The rheological models for the rice stem were developed from the test data. The shearing characteristics were examined at some different levels of portion, cross-sectional area, moisture content of rice stem and shearing angle. The results obtained from this study were summarized as follows 1. The mechanical properties of the stems of the J aponica types were greater than those of the Indica ${\times}$ Japonica hybrid in compression, tension, bendingand shearing. 2. The mean value of the compressive force was 80.5 N in the Japonica types and 55.5 N in the Indica ${\times}$ Japonica hybrid which was about 70 percent to that of the Japonica types, and then the value increased progressively at the lower portion of the stems generally. 3. The average tensile force was about 226.6 N in the Japonica types and 123.6 N in the Indica ${\times}$ Japonica hybrid which was about 55 percent to that of the Japonica types. 4. The bending moment was $0.19N{\cdot}m$ in the Japonica types and $0.13N{\cdot}m$ in the Indica ${\times}$ Japonica hybrid which was 68 percent to that of the Japonica types and the bending strength was 7.7 MPa in the Japonica types and 6.5 MPa in the Indica ${\times}$ Japonica hybrid respectively. 5. The shearing force was 141.1 N in Jinju, the Japonica type and 101.4 N in Taebaeg, the Indica ${\times}$ Japonica hybrid which was 72 percent to that of Jinju, and the shearing strength of Taebaeg was 63 percent to that of Jinju. 6. The shearing force and the shearing energy along the stem portion in Jinju increased progressively together at the lower portions, meanwhile in Taebaeg the shearing force showed the maximum value at the intermediate portion and the shearing energy was the greatest at the portion of 21 cm from the ground level, and also the shearing strength and the shearing energy per unit cross-sectional area of the stem were the greater values at the intermediate portion than at any other portions. 7. The shearing force and the shearing energy increased with increase of the cross-sectional area of the rice stem and with decrease of the shearing angie from $90^{\circ}$ to $50^{\circ}$. 8. The shearing forces showed the minimum values of 110 N at Jinju and of 60 N at Taebaeg, the shearing energy at the moisture content decreased about 15 percent point from initial moisture content showed value of 50 mJ in Jinju and of 30 mJ in Taebaeg, respectively. 9. The stress relaxation behavior could be described by the generalized Maxwell model and also the compression creep behavior by Burger's model, respectively in the rice stem. 10. With increase of loading rate, the stress relaxation intensity increased, meanwhile the relaxation time and residual stress decreased. 11. In the compression creep test, the logarithmic creep occured at the stress less than 2.0 MPa and the steady-state creep at the stress larger than 2.0 MPa. 12. The stress level had not a significant effect on the relaxation time, while the relaxation intensity and residual stress increased with increase of the stress level. 13. In the compression creep test of the rice stem, the instantaneous elastic modulus of Burger's model showed the range of 60 to 80 MPa and the viscosities of the free dashpot were very large numerical value which was well explained that the rice stem was viscoelastic material. 14. The tensile detachment forces were about 1.7 to 2.3 N in the Japonica types while about 1.0 to 1.3 N in Indica ${\times}$ Japonica hybrid corresponding to 58 percent of Japonica types, and the bending detachment forces were about 0.6 to 1.1 N corresponding to 30 to 50 percent of the tensile detachment forces, and the bending detachment of the Indica ${\times}$ Japonica hybrid was 0.1 to 0.3 N which was 7 to 21 percent of Japonica types. 15. The detachment force of the lower portion was little bigger than that of the upper portion in a penicle and was not significantly affected by the harvesting period from September 28 to October 20. 16. The tensile and bending detachment forces decreased with decrease of the moisture content from 23 to 13 percent (w.b.) by the natural drying, and the decreasing rate of detachment forces along the moisture content was the greater in the bending detachment force than the tensile detachment force.

  • PDF

Structure and Properties of Syndiotactic Polystyrene Fibers Prepared in High-speed Melt Spinning Process

  • Hada Yoshiaki;Shikuma Haruo;Ito Hiroshi;Kikutani Takeshi
    • Fibers and Polymers
    • /
    • v.6 no.1
    • /
    • pp.19-27
    • /
    • 2005
  • High-speed melt spinning of syndiotactic polystyrene was carried out using high and low molecular weight poly­mers, HM s-PS and LM s-PS, at the throughput rates of 3 and 6 g/min. The effect of take-up velocity on the structure and properties of as-spun fibers was investigated. Wide angle X-ray diffraction (WAXD) patterns of the as-spun fibers revealed that the orientation-induced crystallization started to occur at the take-up velocities of 2-3 km/min. The crystal modification was a-form. Birefringence of as-spun fibers showed negative value, and the absolute value of birefringence increased with an increase in the take-up velocity. The cold crystallization temperature analyzed through the differential scanning calorimetry (OSC) decreased with an increase in the take-up velocity in the low speed region, whereas as the melting temperature increased after the on-set of orientation-induced crystallization. It was found that the fiber structure development proceeded from lower take-up velocities when the spinning conditions of higher molecular weight and lower throughput rate were adopted. The highest tensile modulus of 6.5 GPa was obtained for the fibers prepared at the spinning conditions of LM s-PS, 6 g/min and 5 km/min, whereas the highest tensile strength of 160 MPa was obtained for the HM s-PS fibers at the take-up velocity of 2 km/min. Elongation at break of as-spun fibers showed an abrupt increase, which was regarded as the brittle-duc­tile transition, in the low speed region, and subsequently decreased with an increase in the take-up velocity. There was a uni­versal relation between the thermal and mechanical properties of as-spun fibers and the birefringence of as-spun fibers when the fibers were still amorphous. The orientation-induced crystallization was found to start when the birefringence reached -0.02. After the starting of the orientation-induced crystallization, thermal and mechanical properties of as-spun fibers with similar level of birefringence varied significantly depending on the processing conditions.

Impact and Fire Retardant Properties of Flax Fiber Reinforced Nanoclay Composites by Taguchi Method (다구치 기법을 사용한 나노클레이가 첨가된 아마섬유 강화 복합재료의 충격 거동 및 연소 특성)

  • Won, Cheon;Kim, Jin-Woo;Lee, Dong-Woo;Kim, Byung-Sun;Song, Jung-Il
    • Composites Research
    • /
    • v.26 no.3
    • /
    • pp.189-194
    • /
    • 2013
  • This paper deals with the study of mechanical properties and impact energy absorbed by composites, made by using thermoplastic and thermoset as matrix, flax fiber and nanoclay as reinforcements. The nanoclay was sprayed on the fiber laminate directly after mixing with ethanol. This experiment designed by Taguchi method and have variable factors, i.e three types of fiber direction(F), three different nanoclay wt%(N) and three spray gun hole shapes(S). According to these conditions, composites were made and the optimum conditions were found to be F1N3S1, F1N2S1, F1N2S1 and F3N2S1 for thermoplastic, and F1N3S2, F1N3S2, F1N2S2 and F3N2S1 for thermoset which were matched with tensile strength, modulus, total impact absorbed energy and heat release rate respectively.