• 제목/요약/키워드: s equations

Search Result 5,067, Processing Time 0.034 seconds

Effect of different viscoelastic models on free vibrations of thick cylindrical shells through FSDT under various boundary conditions

  • Daemi, Hossein;Eipakchi, Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.73 no.3
    • /
    • pp.319-330
    • /
    • 2020
  • This paper investigates the free vibrations of cylindrical shells made of time-dependent materials for different viscoelastic models under various boundary conditions. During the extraction of equations, the displacement field is estimated through the first-order shear deformation theory taking into account the transverse normal strain effect. The constitutive equations follow Hooke's Law, and the kinematic relations are linear. The assumption of axisymmetric is included in the problem. The governing equations of thick viscoelastic cylindrical shell are determined for Maxwell, Kelvin-Voigt and the first and second types of Zener's models based on Hamilton's principle. The motion equations involve four coupled partial differential equations and an analytical method based on the elementary theory of differential equations is used for its solution. Relying on the results, the natural frequencies and mode shapes of viscoelastic shells are identified. Conducting a parametric study, we examine the effects of geometric and mechanical properties and boundary conditions, as well as the effect of transverse normal strain on natural frequencies. The results in this paper are compared against the results obtained from the finite elements analysis. The results suggest that solutions achieved from the two methods are ideally consistent in a special range.

Analysis of Space Charge Propagation in a Dielectric liquid Employing Field-Thermal Electron Emission Model and Finite Element Method (유한요소법과 전계-열전자 방출 모델에 의한 절연유체 내 공간전하 전파해석)

  • Lee, Ho-Young;Lee, Se-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2011-2015
    • /
    • 2009
  • In an insulating dielectric liquid such as transformer oil, space charge injection and propagation were analyzed under the Fowler-Nordheim and Richardson-Dushman's thermal emission charge injection conditions for blade-plane electrodes stressed by a step voltage. The governing equations were composed of all five equations such as the Poisson's equation for electric fields, three continuity equations for electrons, negative, and positive ions, and energy balanced equation for temperature distributions. The governing equations for each carrier, the continuity equations, belong to the hyperbolic-type PDE of which the solution has a step change at the space charge front resulting in numerical instabilities. To decrease these instabilities, the governing equations were solved simultaneously by the Finite Element Method (FEM) employing the artificial diffusion scheme as a stabilization technique. Additionally, the terminal current was calculated by using the generalized energy method which is based on the Poynting's theorem, and represents more reliable and stable approach for evaluating discharge current. To verify the proposed method, the discharge phenomena were successfully applied to the blade~plane electrodes, where the radius of blade cap was $50{\mu}m$.

BIFURCATION PROBLEM FOR A CLASS OF QUASILINEAR FRACTIONAL SCHRÖDINGER EQUATIONS

  • Abid, Imed
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1347-1372
    • /
    • 2020
  • We study bifurcation for the following fractional Schrödinger equation $$\{\left.\begin{eqnarray}(-{\Delta})^su+V(x)u&=&{\lambda}f(u)&&{\text{in}}\;{\Omega}\\u&>&0&&{\text{in}}\;{\Omega}\\u&=&0&&{\hspace{32}}{\text{in}}\;{\mathbb{R}}^n{\backslash}{\Omega}\end{eqnarray}\right$$ where 0 < s < 1, n > 2s, Ω is a bounded smooth domain of ℝn, (-∆)s is the fractional Laplacian of order s, V is the potential energy satisfying suitable assumptions and λ is a positive real parameter. The nonlinear term f is a positive nondecreasing convex function, asymptotically linear that is $\lim_{t{\rightarrow}+{\infty}}\;{\frac{f(t)}{t}}=a{\in}(0,+{\infty})$. We discuss the existence, uniqueness and stability of a positive solution and we also prove the existence of critical value and the uniqueness of extremal solutions. We take into account the types of Bifurcation problem for a class of quasilinear fractional Schrödinger equations, we also establish the asymptotic behavior of the solution around the bifurcation point.

Application Study of Nonlinear Transformation Control Theory for Link Arm System (링크 암에 대한 비선형 변환 제어 이론의 응용 연구)

  • Baek, Y.S.;Yang, C.I.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.94-101
    • /
    • 1996
  • The equations of motion for a basic industrial robotic system which has a rigid or a flexible arm are derived by Lagrange's equation, respectively. Especially, for the deflection of the flexible arm, the assumed mode method is employed. These equations are highly nonlinear equations with nonlinear coupling between the variables of motion. In order to design the control law for the rigid-arm robot, Hunt-Su's nonlinear transformation method and Marino's feedback equivalence condition are used with linear quadratic regulator(LQR) theory. The control law for the rigid-arm robot is employed to input the desired path and to provide the required nonlinear transformations for the flexible-arm robot to follow. By using the implicit Euler method to solve the nonlinear equations, the comparison of the motions between the flexible and the rigid robots and the effect of flexibility are examined.

  • PDF

Determining Shear Modulus of 3-ply Laminated Veneer Lumber by Uniaxial Tension Test

  • Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.425-431
    • /
    • 2013
  • Estimation equations of shear modulus in the plane of laminated veneer lumber (LVL) were compared each other through uniaxial tension test results. The equations - basic elastic equation in the dimensional orthotropic case, Hankinson's formula and empirical equation proposed by Salikis and Falk, were applied to determine the elastic constants at various angles to the grain, which were needed for determination of shear modulus. Tensile elastic modulus of LVL predicted from these equations were compared with test data to evaluate the accuracy of the equation. Tensile elastic modulus rapidly decreased at orientations between 0 and 15 degrees and elastic modulus at grain angles of 15, 30, and 45 degrees overestimated in the presented equations. But the proposed equation by Salikis and Falk showed better prediction, especially at 30, and 45 degrees. This proposed formula would be more useful and practical for estimating of shear modulus of wood composites like LVL to minimize the effect of Poisson's ratio term.

Bending analysis of smart functionally graded plate using the state-space approach

  • Niloufar Salmanpour;Jafar Rouzegar;Farhad Abad;Saeid Lotfian
    • Steel and Composite Structures
    • /
    • v.52 no.5
    • /
    • pp.525-541
    • /
    • 2024
  • This study uses the state-space approach to study the bending behavior of Levy-type functionally graded (FG) plates sandwiched between two piezoelectric layers. The coupled governing equations are obtained using Hamilton's principle and Maxwell's equation based on the efficient four-variable refined plate theory. The partial differential equations (PDEs) are converted using Levy's solution technique to ordinary differential equations (ODEs). In the context of the state-space method, the higher-order ODEs are simplified to a system of first-order equations and then solved. The results are compared with those reported in available references and those obtained from Abaqus FE simulations, and good agreements between results confirm the accuracy and efficiency of the approach. Also, the effect of different parameters such as power-law index, aspect ratio, type of boundary conditions, thickness-to-side ratio, and piezoelectric thickness are studied.

STABILITY FOR INTEGRO-DELAY-DIFFERENTIAL EQUATIONS

  • Goo, Yoon-Hoe;Ryu, Hyun Sook
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.45-51
    • /
    • 2000
  • We will investigate some properties of integro-delay-differential equations, $$x^{\prime}(t)=A(t)x(t-g_1(t,x_t))+{\int}_{t_0}^{t}B(t,s)x(s-g_2(s,x_s))ds,\;t_0{\geq}0,\\x(t_0)={\phi}$$,

  • PDF

Fire Risk Index and Grade Evaluation of Combustible Materials by the New Chung's Equation-XII (새로운 Chung's equation-XII에 의한 연소성 물질의 화재위험성지수 및 등급 평가)

  • Yeong-Jin Chung;Eui Jin
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.388-396
    • /
    • 2023
  • The evaluation of fire risk for combustible materials was carried out using Chung's equations-X, Chung's equations-XI, and Chung's equation-XII, which were newly established. The fire risk index-XII (FRI-XII) and fire risk rating (FRR) were calculated for specimens including camphor tree, cherry, rubber tree, and elm. The combustion characteristics were determined using a cone calorimeter according to ISO 5660-1. Chung's equations caculated the fire performance index-X (FPI-X) and fire growth index-X (FGI-X) values ranged from 89.34 to 1696.75 s2 /kW and from 0.0006 to 0.0107 kW/s2 , respectively. In addition, the fire performance index-XI (FPI-XI) and fire growth index-XI (FGI-XI) varied from 0.08 to 1.48 and from 0.67 to 11.89, respectively. The fire risk index-XII (FRI-XII), which is an indicator of fire risk, showed that camphor tree had a value of 148.63 (fire risk rating: G), indicating a very high fire risk. This suggests that combustible materials with a high concentration of volatile organic compounds have lower FPI-X and FPI-XI values, higher FGI-X and FGI-XI values, and consequently higher FRI-XII values, indicating an increased fire risk.

Static deflection of nonlocal Euler Bernoulli and Timoshenko beams by Castigliano's theorem

  • Devnath, Indronil;Islam, Mohammad Nazmul;Siddique, Minhaj Uddin Mahmood;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.139-150
    • /
    • 2022
  • This paper presents sets of explicit analytical equations that compute the static displacements of nanobeams by adopting the nonlocal elasticity theory of Eringen within the framework of Euler Bernoulli and Timoshenko beam theories. Castigliano's theorem is applied to an equivalent Virtual Local Beam (VLB) made up of linear elastic material to compute the displacements. The first derivative of the complementary energy of the VLB with respect to a virtual point load provides displacements. The displacements of the VLB are assumed equal to those of the nonlocal beam if nonlocal effects are superposed as additional stress resultants on the VLB. The illustrative equations of displacements are relevant to a few types of loadings combined with a few common boundary conditions. Several equations of displacements, thus derived, matched precisely in similar cases with the equations obtained by other analytical methods found in the literature. Furthermore, magnitudes of maximum displacements are also in excellent agreement with those computed by other numerical methods. These validated the superposition of nonlocal effects on the VLB and the accuracy of the derived equations.

New Non-linear Modelling for Vibration Analysis of a Straight Pipe Conveying Fluid (유체를 이송하는 직선관의 진동 해석을 위한 새로운 비선형 모델링)

  • Lee, Su-Il;Jeong, Jin-Tae;Im, Hyeong-Bin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.3
    • /
    • pp.514-520
    • /
    • 2002
  • A new non-linear modelling of a straight pipe conveying fluid is presented for vibration analysis when the pipe is fixed at both ends. Using the Euler-Bernoulli beam theory and the non-linear Lagrange strain theory, from the extended Hamilton's principle are derived the coupled non-linear equations of motion for the longitudinal and transverse displacements. These equations of motion are discretized by using the Galerkin method. After the discretized equations are linearized in the neighbourhood of the equilibrium position, the natural frequencies are computed from the linearized equations. On the other hand, the time histories for the displacements are also obtained by applying the generalized-$\alpha$ time integration method to the non-linear discretized equations. The validity of the new modelling is provided by comparing results from the proposed non-linear equations with those from the equations proposed by Paidoussis.