• 제목/요약/키워드: runx1

검색결과 119건 처리시간 0.023초

Secreotory Leukocyte Protease Inhibitor Regulates Bone Formation via RANKL, OPG, and Runx2 in Rat Periodontitis and MC3T3-E1 Preosteoblast

  • Seung-Yeon Lee;Soon-Jeong Jeong;Myoung-Hwa Lee;Se-Hyun Hwang;Do-Seon Lim;Moon-Jin Jeong
    • 치위생과학회지
    • /
    • 제23권4호
    • /
    • pp.282-295
    • /
    • 2023
  • Background: Secretory leukocyte protease inhibitor (SLPI) protects tissues from proteases and promotes cell proliferation and healing. SLPI also reduces periodontal inflammation and alveolar bone resorption by inhibiting proinflammatory cytokine expression in rat periodontal tissues and osteoblasts. However, little is known of the role of SLPI in the expression of osteoclast regulatory factors from osteoblasts, which are crucial for the interaction between osteoblasts and osteoclasts. Therefore, we aimed to determine the effects of SLPI on the regulation of osteoclasts and osteoblasts in LPS-treated alveolar bone and osteoblasts. Methods: Periodontitis was induced in rats using LPS. After each LPS injection, SLPI was injected into the same area. Immunohistochemical analysis was performed with antibodies against SLPI, RANKL, OPG, and Runx2 in the periodontal tissue. RT-PCR and western blotting were performed to determine the expression levels of SLPI, RANKL, OPG, and Runx2 in LPS- and SLPI/LPS-treated MC3T3-E1 cells. SLPI/LPS-treated MC3T3-E1 cells were also stained with Alizarin Red S. Results: Immunohistochemical analysis showed that the expression levels of SLPI, OPG, and Runx2 were higher while that of RANKL was lower in the LPS/SLPI group relative to those in the LPS group. The mRNA and protein expression of SLPI, OPG, and Runx2 was higher in SLPI/LPS/MC3T3-E1 cells than in LPS/MC3T3-E1 cells, and RANKL expression was lower. During differentiation, OPG and Runx2 protein levels were higher whereas RANKL levels were lower in SLPI/LPS/MC3T3-E1 than in LPS/MC3T3-E1 cells on days 0, 4, 7, and 10. In addition, mineralization and matrix deposition were higher in SLPI/LPS/MC3T3-E1 than in LPS/MC3T3-E1 on days 7 and 10. SLPI decreased RANKL expression in LPS-treated alveolar bone and osteoblasts but increased the expression of OPG and Runx2. Conclusion: SLPI can be considered as a regulatory molecule that indirectly regulates osteoclast activation via osteoblasts and promotes osteoblast differentiation.

치아와 골형성에서의 Runx2와 Osterix의 기능 (FUNCTION OF RUNX2 AND OSTERIX IN OSTEOGENESIS AND TEETH)

  • 김정은
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제33권4호
    • /
    • pp.381-385
    • /
    • 2007
  • Bone is a dynamic organ that bone remodeling occurs throughout life and involves the process in which the bone matrix is broken down through resorption by osteoclasts and then built back again through bone formation by osteoblasts. Usually these two processes balance each other and a stable level of bone mass is maintained. We here discuss transcription factors involved in regulating the osteoblast differentiation pathway. Runx2 is a transcription factor which is essential in skeletal development by regulating osteoblast differentiation and chondrocyte maturation. Its companion subunit, Cbf${\beta}$ is needed for an early step in osteoblast differentiation pathway. Whereas Osterix(Osx) is a new identified osteoblast-specific transcription factor which is required for the differentiation of preosteoblasts into more mature and functional osteoblasts. We also discuss other transcription factors, Msx1 and 2, Dlx5 and 6, Twist, and Sp3 that affect skeletal patterning and development. Understanding the characteristics of mice in which these transcription factors are inactivated should help define their role in bone physiology and pathology of bone defects.

경골 파혈산동탕(破血散疼湯)이 골절 생쥐의 골 유합에 미치는 영향 (Effect of Pahyeolsandong-tang (Poxiesanteng-tang) in Tibia Fracture-induced Mice)

  • 신우석;;차윤엽
    • 한방재활의학과학회지
    • /
    • 제30권4호
    • /
    • pp.1-16
    • /
    • 2020
  • Objectives The main purpose of this study was to evaluate the bone healing effect of Pahyeolsandong-tang (PHT)(Poxiesanteng-tang) extract in tibia fracture-induced mice. Methods PHT was extracted using a solution of 35% ethanol in 60℃ for 8 hours. Mice were randomly divided into 4 groups (normal, control, PHT 50 and PHT 100). Mice of experimental groups were medicated with PHT 50 or 100 mg/kg for 7 to 21 days. To clarify the effect of bone fracture healing, relative messenger RNA (mRNA) expressions of osteocalcin (OCN), runt-related transcription factor 2 (Runx2), osterix (OSX), Sox9, collagen type II alpha 1 chain (Col2a1), receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG) were examined. Results In in vitro experiment, relative mRNA expression of OCN, Runx2, Col2a1 was significantly increased in PHT treated group to compare with control differentiation group. In in vivo experiment, relative mRNA expression of OCN, Runx2, OSX, Sox9, Col2a1, RANKL, OPG was significantly increased in PHT treated group. Conclusions This study showed that PHT accelerates bone fracture healing through the activation of osteoclasts and osteoblasts. It was showed that PHT significantly promotes osteoblasts differentiation by osteoblast differentiation markers such as OCN, Runx2, Col1a2. Also it was investigated that PHT had stimulatory effect on osteoblasts function through enhancing OCN, Runx2, OSX, Sox9, Col2a1 and, osteoclasts function through enhancing RANKL and OPG markers. PHT effectively promotes bone fracture healing process through activation of osteoblasts and osteoclasts.

치아발육시기에서의 RANKL 및 OPG의 발현 양상 (The expression patterns of RANKL and OPG in murine tooth eruption)

  • 황경문;김은정;김영진;남순현;김현정
    • 대한소아치과학회지
    • /
    • 제33권2호
    • /
    • pp.290-303
    • /
    • 2006
  • 치아의 맹출은 치아기 (dental organ)와 치조골의 세포와 연관된 매우 복잡한 과정이다. 우선 치아 맹출이 일어나기 전에 파골세포가 치낭으로 집결하게 된다. 이러한 치낭의 역할은 파골세포와 조골세포의 상호작용으로 이루어지는 골개조와 밀접한 관련이 있는데 이는 치아 맹출과 연관된 많은 유전자들이 치낭에서 발현되기 때문이다. RANKL는 TNF ligand family로써 조골세포에 존재하며 파골세포의 형성 및 전구세포로 부터의 활성화를 유도한다. 이러한 RANKL는 OPG에 의해 그 작용이 억제되며 RANKL와 OPG의 상대적인 비율이 파골세포의 형성에 영향을 미친다. 또한 Runx2 유전자의 변이는 조골세포의 분화와 활성 에 차질을 가져오고 결국 RANKL/OPG pathway를 통해 파골세포 형성에 영향을 줄 수 있다. 치아의 발육 및 맹출에 미치는 RANKL및 OPG의 영향을 알아보고 Runx2와의 연관성을 알아보기 위해 in situ hybridization방법으로 태생 1, 3, 5, 7, 9, 11일된 쥐의 하악 및 제1대구치를 사용하여 실험을 실시한 결과 RANKL, OPG, Runx2의 mRNA가 태생 1일부터 11일까지 치낭 및 치아주위조직에 특성 있게 나타났다. 이중 태생 5일에서 9일 사이에 RANKL 및 Runx2는 치아의 교합면측과 하방 치조골 부위의 발현이 강하게 나타난 반면 OPG는 약한 발현을 보였다. 이는 또한 파골세포의 활성부위를 알아보기 위해 TRAP염색을 실시하여 태생 5일에서 9일 사이에 최대의 활성화를 나타낸 결과와 연관성 있게 나타났다. RANKL, OPG, Runx2의 특성 있는 발현양상들을 종합해 볼 때, 치아 맹출은 치낭, 치아기, 치조골 사이의 상호 작용을 통해 이루어지며, 이는 치낭이 치아 맹출에 있어서 매우 중요하다는 것을 의미한다. 또한, 이러한 유전자들 (RANKL, OPG, Runx2) 이 치아의 맹출에 중요한 역할을 하는 것으로 사료된다.

  • PDF

Association of CYP39A1, RUNX2 and Oxidized Alpha-1 Antitrypsin Expression in Relation to Cholangiocarcinoma Progression

  • Khenjanta, Chakkaphan;Thanan, Raynoo;Jusakul, Apinya;Techasen, Anchalee;Jamnongkan, Wassana;Namwat, Nisana;Loilome, Watcharin;Pairojkul, Chawalit;Yongvanit, Puangrat
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권23호
    • /
    • pp.10187-10192
    • /
    • 2015
  • Cytochrome P450 (CYP) enzymes are a large family of constitutive and inducible mono-oxygenase enzymes that play a central role in the oxidative metabolism of both xenobiotic and endogenous compounds. Several CYPs are involved in metabolism of oxysterols, which are cholesterol oxidation products whose expression may be dysregulated in inflammation-related diseases including cancer. This study focused on CYP39A1, which can metabolize 24-hydroxycholesterol (24-OH) that plays important roles in the inflammatory response and oxidative stress. We aimed to investigate the expression status of CYP39A1 and its transcription factor (RUNX2) in relation to clinical significance in cholangiocarcinoma (CCAs) and to determine whether 24-OH could induce oxidative stress in CCA cell lines. Immunohistochemistry showed that 70% and 30% of CCA patients had low and high expression of CYP39A1, respectively. Low expression of CYP39A1 demonstrated a significant correlation with metastasis. Our results also revealed that the expression of RUNX2 had a positive correlation with CYP39A1. Low expression of both CYP39A1 (70%) and RUNX2 (37%) was significantly related with poor prognosis of CCA patients. Interestingly, oxidized alpha-1 antitrypsin (ox-A1AT), an oxidative stress marker, was significantly increased in CCA tissues in which CYP39A1 and RUNX2 were down regulated. Additionally, immunocytochemistry showed that 24-OH could induce ox-A1AT in CCA cell lines. In conclusion, our study revealed putative roles of the CYP39A1 enzyme in prognostic determination of CCAs.

FGF signaling이 연골 형성에 미치는 영향 (THE EFFECT OF FIBROBLAST GROWTH FACTOR SIGNALING ON CARTILAGE FORMATION)

  • 박충제;이상원;남순현;김영진;류현모;김현정
    • 대한소아치과학회지
    • /
    • 제30권4호
    • /
    • pp.643-653
    • /
    • 2003
  • 막내골화와 연골내골화 등의 정상적인 골격 성장은 섬유아세포 성장인자 (FGF) 와 이들 수용체들 (FGFR) 에 의한 신호 전달체계에 의해 조절된다. 또한 전사조절인자인 Runx2 ($Cbfa1/Pebp2{\alpha}A/AML3$) 는 골아세포분화 뿐만 아니라 골형성에도 필수적인 유전자로 알려져 있다. FGF signaling이 mouse의 두개관과 하악에서의 연골 형성에 어떤 영향을 미치고 있으며, 이 과정에서 Runx2의 연관성을 알아보고자 in vivo 및 in vitro 실험을 시행하여 다음과 같은 결과를 얻었다. 두개관과 하악을 Alcian blue 염색한 결과 시상두개봉합부 연골은 태생 16일부터, Meckel's 연골은 태생11일부터 형성되기 시작하였다. 이들 연골세포들의 성상을 알아보기위한 in situ hybridization 결과 시상두개봉합부 연골 및 Meckel's 연골 모두에서 type II collagen은 발현되었으나, Type X collagen은 발현되지 않았다. Runx2 mRNA는 시상두개봉합부 연골과 Meckel's 연골 모두에서 발현되지 않았지만, 이들 연골들의 가장자리를 둘러싸고 있는 독특한 발현양상을 나타내었다. 두개봉합부에서의 FGF2 protein의 국소적 적용은 두개봉합부 하방의 연골형성을 억제하였다. 또한 하악의 Meckel's 연골 발생 부위에 FGF2 protein의 국소적 적용 역시 Meckel's 연골의 형성을 억제하였다. FGF2 protein은 시상두개봉합부상의 bead 주위로 Runx2의 발현을 유도하였다. 이 결과들을 종합해볼 때, FGF signaling은 골아세포와 연골아세포가 공존하고 있는 조직에서의 연골 형성을 억제하고 있음을 시사해 주고 있으며, 이 과정에서 FGF signaling은 부분적으로 Runx2 유전자의 발현을 조절하므로써 연골세포의 증식과 분화에 관여할 것으로 사료된다.

  • PDF

Hyperosmotic Stimulus Down-regulates $1{\alpha}$, 25-dihydroxyvitamin $D_3$-induced Osteoclastogenesis by Suppressing the RANKL Expression in a Co-culture System

  • Tian, Yu-Shun;Jeong, Hyun-Joo;Lee, Sang-Do;Kong, Seok-Heui;Ohk, Seung-Ho;Yoo, Yun-Jung;Seo, Jeong-Taeg;Shin, Dong-Min;Sohn, Byung-Wha;Lee, Syng-Ill
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제14권3호
    • /
    • pp.169-176
    • /
    • 2010
  • The hyperosmotic stimulus is regarded as a mechanical factor for bone remodeling. However, whether the hyperosmotic stimulus affects $1{\alpha}$, 25-dihydroxyvitamin $D_3$ ($1{\alpha},25(OH)_2D_3$)-induced osteoclastogenesis is not clear. In the present study, the effect of the hyperosmotic stimulus on $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis was investigated in an osteoblast-preosteoclast co-culture system. Serial doses of sucrose were applied as a mechanical force. These hyperosmotic stimuli significantly evoked a reduced number of $1{\alpha},25(OH)_2D_3$-induced tartrate-resistant acid phosphatase-positive multinucleated cells and $1{\alpha},25(OH)_2D_3$-induced bone-resorbing pit area in a co-culture system. In osteoblastic cells, receptor activator of nuclear factor ${\kappa}B$ ligand (RANKL) and Runx2 expressions were down-regulated in response to $1{\alpha},25(OH)_2D_3$. Knockdown of Runx2 inhibited $1{\alpha},25(OH)_2D_3$-induced RANKL expression in osteoblastic cells. Finally, the hyperosmotic stimulus induced the overexpression of TonEBP in osteoblastic cells. These results suggest that hyperosmolarity leads to the down-regulation of $1{\alpha},25(OH)_2D_3$-induced osteoclastogenesis, suppressing Runx2 and RANKL expression due to the TonEBP overexpression in osteoblastic cells.

당귀수산(當歸鬚散)이 대퇴골절 유발 생쥐에 미치는 영향 (Healing Effect of Danggwisu-san (Dangguixu-san) on Femur Fractured Mice)

  • 전동휘;오민석
    • 한방재활의학과학회지
    • /
    • 제31권1호
    • /
    • pp.1-16
    • /
    • 2021
  • Objectives This study was designed to evaluate the effects of Danggwisu-san (Dangguixu-san, DG) on bone repair from femur fracture in mice. Methods Mice were randomly divided into 4 groups (normal, control, positive control and DG 300 mg/kg-treated group). In order to investigate the effects of DG on gene expressions in experimental animals with fracture, we measured the levels of bone morphogenetic protein-2 (BMP2), cyclooxygenase-2 (COX2), Sox9, collagen type II alpha 1 chain (Col2a1), runt-related transcription factor 2 (Runx2), osterix genes. After the cytotoxicity test, we analyzed the levels of expression of osteocalcin and Runx2, and tumor necrosis factor-α (TNF-α), a pro-inflammatory cytokine. The process of fusion in the fracture was also investigated by gross examination. Results Through in vivo BMP2, COX2 gene expression significantly decreased. Sox9 significantly increased. Col2a1, Runx2, osterix gene expression also increased as well, but there was no statistical significance. The degree of unilateral fracture fusion investigated by gross examination was significantly faster than those of the other groups. Through in vitro the level of TNF-α in macrophages was increased by DG in a dose-dependent mannerand and 250 and 500 ㎍/mL showed statistical significance. Osteocalcin and Runx2 genes expressions increased when DG was treated in osteoblasts. Conclusions DG promotes the healing of the fracture through the expression of bone repair-related genes and TNF-α production. This study may set the foundation for the clinical application of DG to the patients with bone fractures.

Longan (Dimocarpus longan Lour.) Fruit Extract Stimulates Osteoblast Differentiation via Erk1/2-Dependent RUNX2 Activation

  • Park, Seoyoung;Kim, Joo-Hyun;Son, Younglim;Goh, Sung-Ho;Oh, Sangtaek
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권6호
    • /
    • pp.1063-1066
    • /
    • 2016
  • Longan (Dimocarpus longan Lour.) has been used as a traditional oriental medicine and possesses a number of physiological activities. In this study, we used cell-based herbal extract screening to identify longan fruit extract (LFE) as an activator of osteoblast differentiation. LFE up-regulated alkaline phosphatase (ALP) activity, induced mineralization, and activated Runx2 gene expression in MC3T3-E1 cells. Furthermore, treatment of MC3T3-E1 cells with LFE promoted the phosphorylation of extracellular signal-regulated kinase1/2 (Erk1/2); however, abrogation of Erk1/2 activation with PD98059 resulted in down-regulation of the phospho-SMAD1/5/8 and Runx2 levels, which in turn reduced the ALP activity. Our findings suggest that LFE exerts its osteogenic activity through activation of the ERK signaling pathway and may have potential as an herbal therapeutic or a preventive agent for the treatment of osteoporosis.

K-Ras-Activated Cells Can Develop into Lung Tumors When Runx3-Mediated Tumor Suppressor Pathways Are Abrogated

  • Lee, You-Soub;Lee, Ja-Yeol;Song, Soo-Hyun;Kim, Da-Mi;Lee, Jung-Won;Chi, Xin-Zi;Ito, Yoshiaki;Bae, Suk-Chul
    • Molecules and Cells
    • /
    • 제43권10호
    • /
    • pp.889-897
    • /
    • 2020
  • K-RAS is frequently mutated in human lung adenocarcinomas (ADCs), and the p53 pathway plays a central role in cellular defense against oncogenic K-RAS mutation. However, in mouse lung cancer models, oncogenic K-Ras mutation alone can induce ADCs without p53 mutation, and loss of p53 does not have a significant impact on early K-Ras-induced lung tumorigenesis. These results raise the question of how K-Ras-activated cells evade oncogene surveillance mechanisms and develop into lung ADCs. RUNX3 plays a key role at the restriction (R)-point, which governs multiple tumor suppressor pathways including the p14ARF-p53 pathway. In this study, we found that K-Ras activation in a very limited number of cells, alone or in combination with p53 inactivation, failed to induce any pathologic lesions for up to 1 year. By contrast, when Runx3 was inactivated and K-Ras was activated by the same targeting method, lung ADCs and other tumors were rapidly induced. In a urethane-induced mouse lung tumor model that recapitulates the features of K-RAS-driven human lung tumors, Runx3 was inactivated in both adenomas (ADs) and ADCs, whereas K-Ras was activated only in ADCs. Together, these results demonstrate that the R-point-associated oncogene surveillance mechanism is abrogated by Runx3 inactivation in AD cells and these cells cannot defend against K-Ras activation, resulting in the transition from AD to ADC. Therefore, K-Ras-activated lung epithelial cells do not evade oncogene surveillance mechanisms; instead, they are selected if they occur in AD cells in which Runx3 has been inactivated.