• Title/Summary/Keyword: runoff-water

Search Result 2,678, Processing Time 0.035 seconds

Analysis of Stormwater Runoff Characteristics for Spatial Distribution of LID Element Techniques using SWMM (SWMM 모형을 이용한 LID 요소기술의 공간적 분포에 따른 우수유출특성 분석)

  • Yeon, Jong Sang;Jang, Young Su;Lee, Jae Hyuk;Shin, Hyun Suk;Kim, Eung Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.3983-3989
    • /
    • 2014
  • As the storm water runoff characteristics in urban areas have changed owing to urbanization, centralized facilities to reduce the urban flood runoff had been implemented. On the other hand, because they have their limitations, LID (Low Impact Development) of the distributed facilities for storm water runoff reduction is being actively planned and applied. The purpose of this study was to analyze the runoff characteristics for the spatial distribution of typical LID element techniques. This study set a study basin consisting of the five subbasins with the same basin and drainage systems, and analyzed the flood runoff characteristics from the two scenarios, one is for the locations and the other is for the number of green roofs (GR) and permeable pavement (PP), respectively, selected as typical LID element techniques. The SWMM implementation results showed that GR reduces 11.07% of the total and 3.42% of the peak amounts of storm water runoff, and PP leads to 18.09% of the total and 17.94% of the peak discharge reduction for a subbasin. Such a reduction rate is constant regardless of the LID locations, and increases linearly with the number of LID applications. The different runoff reduction rates between the GR and PP applications appear to be due to the effects of the different hydraulic conductivities in the control parameters for each LID.

Evaluation and complementation of observed flow in the Hancheon watershed in Jeju Island using a physically-based watershed model (유역모형을 활용한 제주도 한천 유역의 관측유량 평가 및 보완)

  • Kim, Chul Gyum;Kim, Nam Won
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.11
    • /
    • pp.951-959
    • /
    • 2016
  • This study was conducted to evaluate observed runoff data collected every 10 minutes at stream gauging stations in Jeju Island using a physically-based model, SWAT. The Hancheon watershed was selected as study area, and ephemeral stream algorithm suggested by previous research was incorporated into the model, which is able to simulate ephemeral runoff pattern of Jeju streams. Simulated runoff and runoff rates were compared to observations during 2008-2013, which showed 'very good' performance rating in Nash-Sutcliffe model efficiency (ME) and determination coefficient ($R^2$). Some observations had problems such that runoff rates were very high for some rainfall events with little amount of antecedent rainfall, and were very low or missing with much rainfall comparing to previous researches. Additionally, regression equation between precipitation and simulated runoff was generated with high degree of correlation. The equation can be utilized to simply predict reasonable runoff, or to investigate and complement the abnormal or missing data of observations on the assumption that modelling results were sufficiently reliable and satisfactory. As results, minimizing the error in calibrating the model by evaluation of observed data would be helpful to accurately model the rainfall-runoff characteristics and analyze the water balance components of watersheds in Jeju Island.

Runoff Characteristics of Nutrients from Agroforest Culture Field (산림농업지대에서 식물영양물질의 유출특성)

  • Kim, Eun-Hyeok;Cho, Jae-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.57 no.4
    • /
    • pp.331-336
    • /
    • 2014
  • Sediment and nutrient loading caused by the forest to conversion of agricultural lands have led to the deterioration in near water ecosystem. This study was carried out to examine the effects of agroforest culture field and open field culture field on water quality and runoff loading of nutrient. The runoff loading of Tot-N and Tot-P in agroforest culture field were similar to open field culture field. The runoff loading of total suspended solids (TSS) in agroforest culture field and open field culture field were $2,721kg{\pm}196/10a$ and $420{\pm}29kg/10a$ in 2011 and $696kg{\pm}59/10a$ and $463{\pm}36kg/10a$ in 2012, respectively. Our investigation showed that the runoff loading of TSS from agroforest culture field decreased when soil cover and soil stabilization increased. Therefore, protect facility of soil erosion for early alteration of agricultural lands are needed to minimize the soil erosion from agroforest culture field.

Automatic Parameter Estimation Considering Runoff Components on Tank Model (유출성분을 고려한 Tank 모형의 매개변수 자동추정)

  • Bae, Deg-Hyo;Jeong, Il-Won;Kang, Tae-Ho;Noh, Joon-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.3 s.134
    • /
    • pp.423-436
    • /
    • 2003
  • The objective of this study is to propose an automatic parameter estimation scheme considering runoff components of Tank model. It estimates model parameters by Powell's automatic algorithm based on the runoff component separation of the observed hydrograph by using digital filter method. The selected study areas are the 4 main dam sites on the Han River. The simulated flows are compared with the observed flows depending on whether runoff component consideration or not. As a result, the estimated model parameters from classical Powell's method only can relatively well simulate the time variation of total runoff, but gives poor runoff component simulations. Therefore, it can be concluded that the proposed automatic parameter estimation scheme in this study Is more reliable and objective.

Evaluation of Catchbasin for Increasing Interception Capability of Stormwater Runoff (강우유출수 차집능력 증대형 빗물받이의 성능 평가)

  • Han, Sangjong;Shin, Hyunjun;Hwang, Hwankook
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.567-575
    • /
    • 2017
  • It is not cost effective to raise the density of catch basins in preparation for heavy rainfall in terms of construction and maintenance. Our researchers have developed the new catch basin for increasing interception capacity of runoff with internal filtration structure. To compare interception capacity of an existing catch basin with the invented catch basin, a hydraulic experiment device with 4% of road gradients and 0.2% of road gradients was constructed. For runoff conditions of 4.4 l/s, 6.7 l/s and 10.4 l/s, capability of runoff and separation capability of debris (sand and leaves) were evaluated. As the main experimental results, the effectiveness of the developed catch basin has been verified with an increase in interception rate of approximately 22% for the runoff of 6.7 l/s as heavy rainfall. However, the results of invented catch basin showed only 4.5% of settlement rate of debris regarding sand. Therefore, the authors proposed an improved tilted screen structure additionally. After reviewing the performance of improved catch basin, application of the invented catch basin is expected to drain runoff effectively when it is applied to the faulty road drainage section.

Rainfall-Runoff Analysis by Calculation of the Time Distribution Models for Storms (降雨의 時間 分布模型 算定에 의한 降雨-流出 解析)

  • 민경형;이영대
    • Water for future
    • /
    • v.29 no.6
    • /
    • pp.189-201
    • /
    • 1996
  • The main objective of this study is to determine the time distribution models of rainfall in Korea for estimating design floods and to suggest new runoff model(Geomorphologic Instantaneous Unit Hydrograph; GIUH) in order to be easily use the rainfall-runoff model put rainfall models practice to be suitable for the regional characteristics of hydrologic situation by practicing engineers. As a result, the reappearance of triangular hyetograph and GIUH runoff model showed promising. The historical data from about 13,000 event-rainfalls and 73 rainfall-runoff measuring data during 12 years in International Hydrological Program (IHP) basins have been used to determine the statistical factors of the time distribution for rainfalls by the Yen-Chow, Huff, Pilgrim-Cordery and Mononobe models. The Rational, Kajiyama, Nakayasu and Clark model and GIUH model that this study runoff model were used for the purpose of application limit for basin area against design concept by the estimation of flood runoff and the derivation of empirical equations to estimate the parameters for ungaged basins.

  • PDF

Evaluation of HSPF Model Applicability for Runoff Estimation of 3 Sub-watershed in Namgang Dam Watershed (남강댐 상류 3개 소유역의 유출량 추정을 위한 HSPF 모형의 적용성 평가)

  • Kim, So Rae;Kim, Sang Min
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.3
    • /
    • pp.328-338
    • /
    • 2018
  • The objective of this study was to evaluate the applicability of a HSPF (Hydrological Simulation Program-Fortran) model for runoff estimation in the Namgang dam watershed. Spatial data, such as watershed, stream, land use, and a digital elevation map, were used as input for the HSPF model, which was calibrated and validated using observed runoff data from 2004 to 2015 for three stations (Sancheong, Shinan, Changchon) in the study watershed. Parameters for runoff calibration were selected based on the user's manual and references, and parameter calibration was done by trial and error. The $R^2$ (determination coefficient), RMSE (root-mean-square error), NSE (Nash-Sutcliffe efficiency coefficient), and RMAE (relative mean absolute error) were used to evaluate the model's performance. Calibration and validation results showed that annual mean runoff was within a ${\pm}5%$ error in Sancheong and Shinan, whereas there was a14% error in Changchon. The model performance criteria for calibration and validation showed that $R^2$ ranged from 0.80 to 0.92, RMSE was 2.33 to 2.39 mm/day, NSE was 0.71 to 0.85, and RMAE was 0.37 to 0.57 mm/day for daily runoff. Visual inspection showed that the simulated daily flow, monthly flow, and flow exceedance graph agreed well with observations for the Sancheong and Shinan stations, whereas the simulated flow was higher than observed at the Changchon station.

A Study on the Early-stage Storm Runoff Treatment for the Reduction of Non-point Pollution Materials on the Road (도로상의 비점오염물질 저감을 위한 초기 우수유출수 처리에 관한 연구)

  • Roh, Sung-Duk;Lee, Dae-Keun;Chun, Yang-Kun
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.5
    • /
    • pp.525-533
    • /
    • 2004
  • The object ofthis study was to test for STORMSYS process that composed Catch Basin and Stormsys(three units: vortex solids separator, filter media bed and vegetated filter strips). It could be applied to treat the first-flush non-point pollution materials on the road(especially, motorway). This study investigated that the runoff characteristics of non-point pollutions containing the heavy metal(Fe, Zn and Cu) by rainfall showed relatively high pollution concentration in the early-stage storm runoff on the road, which seems to be caused by the vehicular traffic, and showed the rapid reduction of pollution concentration on the basis of about 5mm rainfall volume. As the number of the non-rainy days were increased, the pollution concentration by storm runoff was increased, also. As a test result of this process, the average removal efficiency of BOD, $COD_{mn}$, SS, T-N and T-P over the testing period were 92.7%,88.6%,97.4%,93.0% and 93.3%, respectively. Also, the average removal efficiency of n-Hexane, Fe, Zn and Cu were 86.7%, 96.1%, 84.4% and 78.4%, respectively. As shown in the characteristics of storm runoff, the non-point pollution materials have high pollution concentration in the early-stage storm runoff on the road, the installation of STORMSYS process is expected to reduce considerable amount of non-point pollutions.

Long-term runoff characteristics on HRU variations of PRMS (PRMS의 HRU크기에 따른 장기유출특성)

  • Kim, Nam-Won;Kim, Hyeon-Jun;Park, Sun-Ho
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.2
    • /
    • pp.167-177
    • /
    • 2005
  • In this study, the PRMS(Precipitation and Runoff Modeling System), developed by USGS(United States Geological Survey), was applied to the Yongdam dam watershed in the Geum River basin. The efficiency for runoff simulation and spatial characteristics of PRMS were evaluated. The runoff changes with the changes of subcatchments and HRUs were estimated. As results, the size of the subcatchment and HRV did not significantly affect the runoff at the exit of watershed. Consequently, the spatial characteristic of PRMS was shown as lumped type rather than semi-distributed. The geographical input data for Yongdam dam watershed were converted to the USGS Input type, and the parameters were calibrated using Rosenbrock optimization method, validated with the observed runoff data. The PRMS showed resonable agreements in the long-term continuous runoff simulation, if the accuracy of observed data is ensured.

Application of Storage Function Method with SCS Method (SCS 초과우량산정방법을 이용한 저류함수법 적용)

  • Kim, Tae-Gyun;Yoon, Kang-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2007.05a
    • /
    • pp.449-453
    • /
    • 2007
  • Has been being operated since 1974, recently, the flood forecasting and warning system is applied in almost all the rivers in Korea, and the Storage Function Method(SFM) is used for flood routing. The SFM which was presented by Toshimitsu Kimura(1961) routes floods in channels and basins with the storage function as the basic equation. A watershed is devided into two zone, runoff and percolation area and Runoff is occured when cumulated rainfall is not exceed saturation rainfall, but exceed, runoff is occured from percolation area, too. Runoff area is given and not changed, runoff ratio is constant. In routing process, runoff from runoff and percolation area is routed seperately with nonlinear cenceptual reservior having same characteristics and it is unreasonable assumption. Modified SFM is proposed with storage function and continuity Equation which has no assumption for routing process and effective rainfall is calculated by SCS Method. For Wi Stream, comparision of Kimura and Modified SFM is conducted and It could be seen that Modified SFM is more improvemental and easily applicable method.

  • PDF