• Title/Summary/Keyword: runoff-water

Search Result 2,676, Processing Time 0.037 seconds

The Verification of Application of Distributed Runoff Model According to Estimation Methods for the Missing Rainfall Data (결측강우보완방법에 따른 분포형 유출모형의 적용성 검증)

  • Choi, Yong-Joon;Kim, Yeon-Su;Lee, Gi-Ha;Kim, Joo-Cheol
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1375-1384
    • /
    • 2010
  • The purpose of this research is to understand the change of runoff characteristics by estimated spatial rainfall. Therefore, this paper largely composed of two parts. First, we compared the simulated result according to estimation method, ID(Inverse Distance Method, ID2(Inverse Square Distance Method), and Kr(General Covariance Kriging Method), after letting miss rainfall data to the observed data. Second, we reviewed the runoff characteristics of the distributed runoff model according to the estimated spatial rainfall. On the basis of Yuseong water level station, we select the target basin as Gabchun watershed. We assumed 1 point or 2 point of the 6 rainfall gauge stations in watershed were missed. We applied the spatial rainfall distributed by Kr to Hy-GIS GRM, distributed runoff model. When 1 point rainfall data is missed, Kr is superior to others in point rainfall estimation and runoff estimation of Hy-GIS GRM. However, in case rainfall data of 2 points is missed, all of three methods did not give suitable result for them. In conclusion, Kr showed better applicability than other estimated methods if rainfall's data less than 2 points is missed.

Study on the Runoff Characteristics of Non-point Source Pollution in Municipal Area Using SWMM Model -A Case Study in Jeonju City (SWMM모델을 이용한 도시지역 비점오염원의 유출특성 연구 -전주시를 대상으로)

  • Paik Do-Hyson;Lim Young-Hwan;Choi Jin-Kyu;Jung Paul-Gene;Kwak Dong-Heui
    • Journal of Environmental Science International
    • /
    • v.14 no.12
    • /
    • pp.1185-1194
    • /
    • 2005
  • The runoff characteristics of non-point source pollutions in the municipal area of Jeonju were investigated and analyzed by using the SWMM (Storm Water Management Model). The flow rates and water qualities of runoff from two types of drainage conduits were measured respectively. One was a conventional combined sewer system and the other was a separated sewer system constructed recently From August to November in 2004, investigations on two rainfall events were performed and flow rate, pH, BOD, COD, SS, T-N and T-P were measured. These data were also used for model calibration. On the basis of the measured data and the simulation results by SWMM, it is reported that $80-90\%$ of pollution load is discharged in the early-stage storm runoff. Therefore, initial 10-30 mm of rainfall should be controlled effectively for the optimal treatment of non-point source pollution in urban area. Also, it was shown that the SWMM model was suitable for the management of non-point source pollution in the urban area and for the analysis of runoff characteristics of pollutant loads.

Performance Evaluation of a Double Layer Biofilter System to Control Urban Road Runoff (I) - System Design - (이중층 토양 여과시설을 이용한 도로 강우 유출수 처리성능 평가 (I) - 시설 설계인자 결정을 중심으로 -)

  • Cho, Kang Woo;Kim, Tae Gyun;Lee, Byung Ha;Lee, Seul Bi;Song, Kyung Guen;Ahn, Kyu Hong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.5
    • /
    • pp.599-608
    • /
    • 2009
  • This manuscript covers the results of field investigation and lab-scale experiments to design a double-layered biofilter system to control urban storm runoff. The biofilter system consisted of a coarse soil layer (CSL) for filtration and fine soil layer (FSL) for adsorption and biological degradation. The variations of flow rate and water quality of runoff from a local expressway were monitored for seven storm events. Laboratory column experiments were performed using seven kinds of soil and mulch to maximize pollutants removal. The site mean concentration (SMC) of storm runoff from the drainage area (runoff coefficient: 0.92) was measured to be 203 mg/L for SS, 307 mg/L for $TCOD_{Cr}$, 12.3 mg/L for TN, 7.3 mg/L for ${NH_4}^+-N$, and 0.79 mg/L for TP, respectively. This study employed a new design concept, to cover the maximum rainfall intensity with one month recurrence interval. Effective storms for last ten years (1998-2007) in seoul suggested the design rainfull intensity to be 8.8 mm/hr Single layer soil column showed the maximum removal rate of pollutants load when the uniformity coefficient of CSL was 1.58 and the silt/clay contents of FSL was virtually 7%. The removal efficiency during operation of double layer soil column was 98% for SS and turbidity, 75% for TCODCr, 56% for ${NH_4}^+-N$, 87% for TP, and 73-91% for heavy metals. The hydraulic conductivity of the soil column, 0.023 cm/sec, suggested that the surface area of the biofilter system should be about 1% of the drainage area to treat the rainfall intensity of one month recurrence interval.

Guideline of LID-IMPs Selection and the Strategy of LID Design in Apartment Complex (LID-IMPs 선정 가이드라인 제시와 아파트단지에서의 LID 설계)

  • Jeon, Ji-Hong;Kim, Jung-Jin;Choi, Dong Hyuk;Han, Jae Woong;Kim, Tae-Dong
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.886-895
    • /
    • 2009
  • The guideline of selection of Integrated Management Practices (IMPs), such as wood, green roof, lawn, and porous pavement, for Low Impact Development (LID) design was proposed by ranking the reduction rate of surface runoff using LIDMOD1.0. Based on the guideline, LID was designed with several scenarios at two apartment complexes located at Songpa-gu, Seoul, Korea, and the effect of LID on surface runoff was evaluated during last 10 years. The effect of runoff reduction of IMP by land use change was highly dependent on the kind of hydrologic soil group. The wood planting is the best IMPs for reduction of surfac runoff for all hydrologic soil groups. Lawn planting is an excellent IMP for hydrologic soil group A, but reduction rate is low where soil doesn't effectively drains precipitation. The green roof shows constant reduction rate of surface runoff because it is not influenced by hydrologic soil group. Compared to the rate of other IMPs, the green roof is less effect the surface runoff reduction for hydrologic soil group A and is more effect for hydrologic soil group C and D followed to planing wood. The porous pavement for the impervious area is IMPs which is last selected for LID design because of the lowest reduction rate for all hydrologic soil group. As a result of LID application at study areas, we could conclude that the first step of the strategy of LID design at apartment complex is precuring pervious land as many area as possible, second step is selecting the kind of plant as more interception and evapotranspiration as possible, last step is replacing impervious land with porous pavement.

The Study on Development and Verification of Rainfall-Runoff Simulator for LID Technology Verification (LID 기술의 효율성 검증을 위한 강우-유출 모의장치 개발 및 검증실험에 관한 연구)

  • Jang, Young Su;Kim, Mi Eun;Baek, Jong Seok;Shin, Hyun Suk
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.6
    • /
    • pp.513-522
    • /
    • 2014
  • Climate change and urbanization have affected a increase of peak discharge and water pollution etc. In a view of these aspects, the LID(Low Impact Development) technology has been highlighted as one of adjustable control measures to mimic predevelopment hydrologic condition. Many LID technologies have developed, but there is a lack of studies with verification of LID technology efficiency. Therefore this study developed a rainfall-runoff simulator could be possible to verify LID technology efficiency. Using this simulator, this study has experimented the rainfall verification through the rainfall distribution experiment and the experiment to show the relation between inflow and effective rainfall in order to sprinkle the equal rainfall in each unit bed. As a result, the study defined the relation between allowable discharge range and RPM by nozzle types and verified the hydrologic cycle such as the relation between infiltration rate, surface runoff and subsurface runoff at pervious area and impervious area through the rainfall-runoff experiment.

Application of GIS for Runoff Simulation in Ungaged Basin(I): Selection of Soil Map and Landuse Map (미계측 유역의 유출모의를 위한 지리정보시스템의 응용(I) : 토양도 및 토지이용도의 선정)

  • Kim, Gyeong-Tak;Sim, Myeong-Pil
    • Journal of Korea Water Resources Association
    • /
    • v.32 no.2
    • /
    • pp.163-176
    • /
    • 1999
  • Hydrology-based topographical informations generated by GIS techniques could be changed according to the selection of base map, algorithm of extraction, and so on. The purpose of this paper is to investigate the variation of SCS CN extracted by GIS technique and to propose the effective strategy for applying GIS to the rainfall-runoff simulation in ungaged basin. For experimental implementation, GIS spatial data, such as reconnaissance soil map, detailed interpretative soil map, landuse planning map and remotely sensed data(Landsat TM), were collected and generated to calculate the amount of effective rainfall in Pyungchang river basin. In applying SCS Runoff Curve Number to the test basin, the hydrological attribute data were analyzed. In addition, the characteristics of runoff responses according to the selection of GIS spatial data for SCS CN were reviewed. This study shows the applicability of GIS techniques to runoff simulation in ungaged basin by comparing with the measured flood hydrograph. It has been found that the detained interpretative soil map and remote sensing data are appropriate for calculating of SCS CN.

  • PDF

Assessment of Rainfall Runoff and Flood Inundation in the Mekong River Basin by Using RRI Model

  • Try, Sophal;Lee, Giha;Yu, Wansik;Oeurng, Chantha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2017.05a
    • /
    • pp.191-191
    • /
    • 2017
  • Floods have become more widespread and frequent among natural disasters and consisted significant losses of lives and properties worldwide. Flood's impacts are threatening socio-economic and people's lives in the Mekong River Basin every year. The objective of this study is to identify the flood hazard areas and inundation depth in the Mekong River Basin. A rainfall-runoff and flood inundation model is necessary to enhance understanding of characteristic of flooding. Rainfall-Runoff-Inundation (RRI) model, a two-dimensional model capable of simulating rainfall-runoff and flood inundation simultaneously, was applied in this study. HydoSHEDS Topographical data, APPRODITE precipitation, MODIS land use, and river cross section were used as input data for the simulation. The Shuffled Complex Evolution (SCE-UA) global optimization method was integrated with RRI model to calibrate the sensitive parameters. In the present study, we selected flood event in 2000 which was considered as 50-year return period flood in term of discharge volume of 500 km3. The simulated results were compared with observed discharge at the stations along the mainstream and inundation map produced by Dartmouth Flood Observatory and Landsat 7. The results indicated good agreement between observed and simulated discharge with NSE = 0.86 at Stung Treng Station. The model predicted inundation extent with success rate SR = 67.50% and modified success rate MSR = 74.53%. In conclusion, the RRI model was successfully used to simulate rainfall runoff and inundation processes in the large scale Mekong River Basin with a good performance. It is recommended to improve the quality of the input data in order to increase the accuracy of the simulation result.

  • PDF

CHARACTERIZATION OF NONPOINT SOURCES FROM URBAN RUNOFF

  • Park, Jae-Young;Jo, Young-Min;Oh, Jong-Min
    • Water Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2000
  • This work was completed in partial fulfillment of an on-going research ot descover the effective management of urban nonpoint sources. The current data was obtained from the area of Shingal, Kyunni-do. The investigation was are predominant soures of storm-runoff load and drainage. As a result of the investigation, the road was found to be most seriously contaminated and a significant potential source deteriorating the quality of streams and lakes in the vicinity of the town. Thus, in could be concluded that an effective and systematic cleaning technique must be developed as soon as possible and be frequently applied to the road.

  • PDF

Derivation of Design Flood Using Multisite Rainfall Simulation Technique and Continuous Rainfall-Runoff Model

  • Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.540-544
    • /
    • 2009
  • Hydrologic pattern under climate change has been paid attention to as one of the most important issues in hydrologic science group. Rainfall and runoff is a key element in the Earth's hydrological cycle, and associated with many different aspects such as water supply, flood prevention and river restoration. In this regard, a main objective of this study is to evaluate design flood using simulation techniques which can consider a full spectrum of uncertainty. Here we utilize a weather state based stochastic multivariate model as conditional probability model for simulating the rainfall field. A major premise of this study is that large scale climatic patterns are a major driver of such persistent year to year changes in rainfall probabilities. Uncertainty analysis in estimating design flood is inevitably needed to examine reliability for the estimated results. With regard to this point, this study applies a Bayesian Markov Chain Monte Carlo scheme to the NWS-PC rainfall-runoff model that has been widely used, and a case study is performed in Soyang Dam watershed in Korea. A comprehensive discussion on design flood under climate change is provided.

  • PDF

Estimation of Runoff Pollutant Loadings in Boryung Reservoir Watershed (보령담수호 유역의 유출 오염부하량 추정)

  • Choi, Jin-Kyu;Son, Jae-Gwon;Koo, Ja-Woong;Cho, Jae-Young;Kim, Young-Joo
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.30-33
    • /
    • 2001
  • This study was carried out to estimate the runoff pollutant loadings for water quality management in Boryung freshwater reservoir watershed. The hydrological monitoring system were operated for water level measurement during $1999{\sim}2000$ and temporal variation of water quality constituents such as pH, EC, total nitrogen, total phosphorus were analysed, periodically. Monthly runoff volumes by TANK model and potential pollutant loadings calculated by unit method were compared with measured values.

  • PDF