• Title/Summary/Keyword: runoff-water

Search Result 2,676, Processing Time 0.024 seconds

Evaluation of SRI Water Management on the Reduction of Irrigation Supply and NPS Pollution in Paddies (SRI 물관리 방법이 논의 관개용수량과 비점오염원 저감에 미치는 영향)

  • Seo, Jiyeon;Park, Baekyung;Park, Woonji;Yoon, Kwangsik;Choi, Dongho;Kim, Yongseok;Ryu, Jichul;Choi, Joongdae
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.2
    • /
    • pp.183-190
    • /
    • 2016
  • Monitored data (rainfall runoff and water quality) from 4 different paddy sites over 3 years were compared to analyze the effect of irrigation water management on irrigation supply and rainfall runoff quality in Korea. The system of rice intensification water management was adopted at one site (SRI) while the conventional water management method was used for rice culture at the other three sites (CT, SD and HD). The soil texture at SRI, CT and SD was sandy loam while that at HD was silt loam. The average reduction of irrigation supply at SRI compared with CT, SD and HD during the 3 years studied was 49%, 51% and 55%, respectively. The average event mean concentration (EMC) at SRI compared with that at CT, SD and HD was decreased by 35% (BOD), 44% (COD), 47% (SS), 19% (TN) and 38% (TP). The correlation between rainfall runoff and the measured non-point source (NPS) pollutants was very good in general. The comparison revealed that SRI water management significantly reduced both irrigation supply and EMC in rainfall runoff. Paddy NPS pollution was closely related to factors that induce runoff such as rainfall and irrigation supply. It was concluded that SRI management could be an effective and practical option to cope with both water shortage due to climate change and water quality improvement in rural watersheds. However, further studies are recommended in large irrigation districts for use in the development and implementation of NPS pollution policies since the data was collected from field sized paddies.

A Study on the Simulation of Runoff Hydograph by Using Artificial Neural Network (신경회로망을 이용한 유출수문곡선 모의에 관한 연구)

  • An, Gyeong-Su;Kim, Ju-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.1
    • /
    • pp.13-25
    • /
    • 1998
  • It is necessary to develop methodologies for the application of artificial neural network into hydrologic rainfall-runoff process, although there is so much applicability by using the functions of associative memory based on recognition for the relationships between causes and effects and the excellent fitting capacity for the nonlinear phenomenon. In this study, some problems are presented in the application procedures of artificial neural networks and the simulation of runoff hydrograph experiences are reviewed with nonlinear functional approximator by artificial neural network for rainfall-runoff relationships in a watershed. which is regarded as hydrdologic black box model. The neural network models are constructed by organizing input and output patterns with the deserved rainfall and runoff data in Pyoungchang river basin under the assumption that the rainfall data is the input pattern and runoff hydrograph is the output patterns. Analyzed with the results. it is possible to simulate the runoff hydrograph with processing element of artificial neural network with any hydrologic concepts and the weight among processing elements are well-adapted as model parameters with the assumed model structure during learning process. Based upon these results. it is expected that neural network theory can be utilized as an efficient approach to simulate runoff hydrograph and identify the relationship between rainfall and runoff as hydrosystems which is necessary to develop and manage water resources.

  • PDF

Characteristics of TN and TP in Runoff from Reclaimed Paddy Field of Fine Sandy Loam

  • Lee, Kyung-Do;Hong, Suk-Young;Kim, Yi-Hyun;Na, Sang-Il;Lee, Kyeong-Bo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.417-425
    • /
    • 2013
  • This study investigated the runoff from rice paddy located on reclaimed fine sandy loam soil to provide data for the development of policies to protect water quality of estuaries. Total N (TN), Total P (TP) concentrations and runoff loads at outlet were monitored from 2006 to 2008. Soil phosphate adsorptivity was measured and compared with typical paddy soil in watersheds. TP concentration of the paddy water and TP runoff loads were much greater than those of typical paddy field in watershed because phosphate adsoptivity in reclaimed paddy field of fine sandy loam appeared to be a third of those of typical paddy soils by relatively low soil OM and high sand content of the reclaimed soil. Thus, nutrient runoff, particularly phosphate from the reclaimed paddy field needs to be managed more thoroughly to protect estuarine water quality.

Relationship between Pollutant and Influence Factors in Highway runoff (강우시 고속도로 노면 유출 오염부하 발생 특성 분석)

  • Kang, Hee-Man;Lee, Doo-Jin;Bae, Woo-Keun;Kang, Hye-Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.1
    • /
    • pp.47-54
    • /
    • 2012
  • This study analyzed influence factors and the correlation among pollutants which affect occurrence of leaked pollution based on the long-term runoff flow and water quality investigation results to understand the characteristics of highway rainfall runoff pollution load. According to the result of correlation analysis on TSS (Total Suspended Solid) concentration, anteceded dry days, rainfall intensity, traffic volume and etc. as major influence factors of highway rainfall runoff pollution loads, the correlations were weak or scarce in most items. These results might be attributed that runoff pollutant concentration changes vary severely on changes of rainfall intensity and rainfall duration within rainfall and it is affected by disturbances of vehicles and street cleaning and etc. as characteristics of the highway. While Cu, Fe and Zn which are discharged with high concentrations out of heavy metals showed high correlation with particulate matter, organic matter(COD), nutrient(TN, TP), Ni and Pb showed relatively low correlation in a correlation evaluation by pollutant. Significant correlation with traffic volumes was not shown and TSS concentration even decreased in accordance with increase of the traffic volume. In the comparison with precedent studies, it was considered necessary additional analysis of the effects of rainfall section analysis, road type, disturbances of surface contaminants by vehicles, rainfall and climate conditions, surrounding terrains etc.

Establishment of Rainfall and Contaminants Runoff Modeling System for the Joman River Watershed Using SWMM (SWMM을 이용한 조만강 유역 강우-오염물 유출모델링시스템 구축)

  • Lee, Yong-Chin;Yoon, Young-Sam;Lee, Nam-Joo
    • Journal of Environmental Science International
    • /
    • v.18 no.9
    • /
    • pp.983-992
    • /
    • 2009
  • The purpose of the present study is to analyze pollutant runoff characteristics from non-point sources in Joman River basin. The present study contains analyzed results of rainfall and SS, BOD, COD, TN, TP runoff from Joman River basin. This study contains a sensitivity analysis of parameters that affect the simulation results of rainfall and pollutants runoff. Result of the sensitivity analysis shows that proportion of watershed and impervious areas is the most sensitive to peak discharge and total flowrate for rainfall runoff and that WASHPO is the most sensitive parameter for pollutants runoff. For parameter estimation and verification, flowrate and water quality is measured at the Kangdong Bridge in Haeban stream. A single rainfall event is use to perform parameter estimation and verification. Results of the present study show that total pollutant loads of Joman River basin is 11,600 ton of SS, 452 ton of BOD, 1,084 ton of COD, 515 ton of TN, and 49 ton of TP, respectively. In addition, it is found that contribution ratio of non point source and total source is 89% of SS, 63% of BOD, 61% of COD, 21% of TN, and 32% of TP, respectively.

Predicting Dynamic Behaviors of Highway Runoff using A One-dimensional Kinematic Wave Model (일차원 kinematic wave 모형을 이용한 고속도로 강우 유출수의 동적 거동 예측)

  • Kang, Joo-Hyon;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.23 no.1
    • /
    • pp.38-45
    • /
    • 2007
  • A one-dimensional kinematic wave model was used to calculate temporal and spatial changes of the highway runoff. Infiltration into pavement was considered using Darcy's law, as a function of flow depth and pavement hydraulic conductivity ($K_p$). The model equation was calculated using the method of characteristics (MOC), which provided stable solutions for the model equation. 22 storm events monitored in a highway runoff monitoring site in west Los Angeles in the U.S. were used for the model calculation and evaluation. Using three different values of $K_p$ ($5{\times}10^{-6}$, $10^{-5}$, and $2{\times}10^{-5}cm/sec$), total runoff volume and peak flow rate were calculated and then compared with the measured data for each storm event. According to the calculation results, $10^{-5}cm/sec$ was considered a site representative value of $K_p$. The study suggested a one-dimensional method to predict hydrodynamic behavior of highway runoff, which is required for the water quality prediction.

Study on Sediment Runoff Reduction using Vegetative Filter Strips in a Mountainous Watershed (초생대를 이용한 산지유역 토사유출 저감에 관한 연구)

  • Son, Kwangik;Kim, Hyungjoon;Lim, Kyoung Jae;Jung, Younghun
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.407-417
    • /
    • 2015
  • Soil loss is one of the significant disasters which have threatened human community and ecosystem. Particularly, Korea has high vulnerability of soil loss because rainfall is concentrated during summer and mountainous regions take more than 70% of total land resources. Accordingly, the sediment control management plan are required to prevent the loss of soil resources and to improve water quality in the receiving waterbodies. In this regard, the objectives of this study are 1) to quantify the effect of the Vegetative Filter Strip (VFS) on sediment runoff reduction and 2) to analyze the relationship of rainfall intensity and sediment runoff. For this, SATEEC and VFSMOD were used to estimate sediment runoff according to rainfall intensity and to quantify the effect of VFS on sediment runoff reduction, respectively. In this study, the VFS has higher impact on sediment reduction for lower maximum rainfall intensity, which means that the maximum rainfall intensity is one of significant factors to control sediment runoff. Also, the sediment with VFS considered was highly correlated with maximum rainfall intensity. For these results, this study will contribute to extend the applicability of VFS in establishing eco-friendly sediment control plans.

Simulation of Field Soil Loss by Artificial Rainfall Simulator - By Varing Rainfall Intensity, Surface Condition and Slope - (인공강우기에 의한 시험포장 토양유실량 모의 - 강우강도, 지표면 및 경사조건 변화 -)

  • Shin, Minhwan;Won, Chul-hee;Choi, Yong-hun;Seo, Jiyeon;Lee, Jaewoon;Lim, KyoungJae;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.785-791
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as the most cause of muddy water problem among Non-point source (NPS) pollutant, was studied by the analysis of direct runoff, groundwater discharge, and soil water storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared soil as slope increases from 5% to 20%. The direct runoff volume from straw covered surface were much lower than bared surface. The infiltration capacity of straw covered surface increased, because the surface sealing by fine material of soil surface didn't occur due to the straw covering. Under the same rainfall intensity and slope condition, 2.4~8.2 times of sediment yield were occurred from bared surface more than straw covered surface. The volume of infiltration increased due to straw cover and the direct runoff flow decreased with decrease of tractive force in surface. To understand the relationship of the rate of direct runoff, groundwater discharge, and soil water storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, except between the rate of groundwater storage and rainfall intensity.

Runoff of Trifluralin from Fields in Louisiana (Louisiana의 농장에서 Trifluralin의 유출)

  • ;S.E. Feagley
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.585-592
    • /
    • 1996
  • Trifluralin (2, 6-dinitro-N, N-dipropyl-4- (trifluormethyl) benzenamine) was applied preemergent to soybean in plots drained or nondrained, in louisiana. Plots 14.6 ha were arranged to give 1683 g/ha of trifluralin. The half life of trifluralin in the top 15 cm of soil was 42.6 darts and f6.0 days in nondrained plot and drained plot, respectively. The concentrations of trifluralin in surface runoff water and subsurface runoff water were 0.62 ng/ml-0.02 ng/ml and 11.06 ng/ml-0.02 ng/ml, respectively. The concentration of trifluralin in runoff water was smaller than 2 ng/ml for trifluralin of U.S. Environmental Protection Agency advisory. Total loss of trifluralin in runoff water was 0.021 % of applied amount at drained plots during three month after application. Trifluralin was moved hardly in the water. Subsurface drainage -reduced trifluralin losses because concentration of trifluralin in the subsurface runoff water in drained fields was low.

  • PDF

Analysis of Rainfall-Runoff Characteristics on Impervious Cover Changes using SWMM in an Urbanized Watershed (SWMM을 이용한 도시화유역 불투수율 변화에 따른 강우유출특성 분석)

  • Oh, Dong Geun;Chung, Se Woong;Ryu, In Gu;Kang, Moon Seong
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.1
    • /
    • pp.61-70
    • /
    • 2010
  • The increase of impervious cover (IC) in a watershed is known as an important factor causing alteration of water cycle, deterioration of water quality and biological communities of urban streams. The study objective was to assess the impact of IC changes on the surface runoff characteristics of Kap Stream basin located in Geum river basin (Korea) using the Storm Water Management Model (SWMM). SWMM was calibrated and verified using the flow data observed at outlet of the watershed with 8 days interval in 2007 and 2008. According to the analysis of Landsat satellite imagery data every 5 years from 1975 to 2000, the IC of the watershed has linearly increased from 4.9% to 10.5% during last 25 years. The validated model was applied to simulate the runoff flow rates from the watershed with different IC rates every five years using the climate forcing data of 2007 and 2008. The simulation results indicated that the increase of IC area in the watershed has resulted in the increase of peak runoff and reduction of travel time during flood events. The flood flow ($Q_{95}$) and normal flow ($Q_{180}$) rates of Kap Stream increased with the IC rate. However, the low flow ($Q_{275}$) and drought flow ($Q_{355}$) rates showed no significant difference. Thus the subsurface flow simulation algorithm of the model needs to be revisited for better assessment of the impact of impervious cover on the long-term runoff process.