• Title/Summary/Keyword: runoff reduction effects

Search Result 77, Processing Time 0.03 seconds

Analysis of Flood Resilience of the Stormwater Management Using SWMM Model (SWMM 모델을 이용한 우수 관리 홍수 탄력성 분석)

  • Hwang, Soonho;Kim, Jaekyoung;Kang, Junsuk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.126-126
    • /
    • 2021
  • Stormwater reduction plays an important role in the safety and resilience to flooding in urban areas. Due to rapid climate change, the world is experiencing abnormal climate phenomena, and sudden floods and concentrated torrential rains are frequently occurring in urban basins and the amount of outflow due to stormwater increases. In addition, the damage caused by urban flooding and inundation due to extreme rainfall exceeding the events that occurred in the past increases. To solve this problem, water supply, drainage, and water supply for sustainable urban development, the water management paradigm is shifting from sewage maintenance to water circulation and water-sensitive cities. So, in this study, The purpose of this study is to examine measures to increase the resilience of urban ecosystem systems for urban excellence reduction by analyzing the effects of green infra structures and LID techniques and evaluating changes in resilience. In this study, for simulating and analysis of runoff for various stormwater patterns and LID applications, Storm Water Management Model (SWMM) was used.

  • PDF

Polyacrylamide, Its Beneficial Application of Soil Erosion Control from Sloped Agricultural Fields (고분자유기응집제 (Polyacrylamide)를 활용한 농경지 사면 토양유실 저감 효과 분석)

  • Kim, Minyoung;Choi, Yonghun;Lee, Sangbong;Kim, Hyunjeong;Kim, Seounghee;Kim, Youngjin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.123-128
    • /
    • 2015
  • This study conducted a series of field experiments using soil conditioners, Polyacrylamide(PAM) and gypsum, to evaluate their effects in reducing sediment loss and surface runoff. In addition, the correction factors (K-alpha) for the erodibility factor (K) were determined to reflect the effects of PAM and PAM+gypsum in applying the USLE equation. Experimental erosion plots individually sized $10m^2$ (5 m long, 2 m wide and 1 m deep) have different slopes (10, 20 and 30%). Erosion plots were prepared for one control (C; no PAM and gypsum) and two treatments (P; PAM 20 kg/ha, PG; PAM 20 kg/ha+gypsum 3,000 kg/ha). The amounts of soil eroded and runoff were continuously monitored from July $1^{st}$ to Oct. $31^{st}$ in 2010 and compared to each other. The amount of sediment loss from a control plot was 399.2 ton/ha and the relative reduction of sediment loss were 11.4% and 33.4% for PAM-treated and PAM+gypsum treated plots, respectively. This study also determined the K-alpha factors in the USLE equation to account for the erosion control effectiveness of PAM and gypsum application. The K-alpha factors were calculated as 0.92 for PAM-treated plot and 0.69 for PAM+gypsum-treated plot. The findings of this study revealed that soil conditioners (PAM and gypsum) could play a significant role in controlling soil erosion. In addition, the modified USLE equation using the K-alpha could provide valuable information to make better decision on establishment of best management practice for soil erosion control in agriculture.

Analysis of runoff reduction and storage capacity in permeable pavement parking lot (투수성 주차장에서의 강우 유출저감 및 저류용량 분석)

  • Jung, Yongjun;Min, Kyungsok
    • Journal of Wetlands Research
    • /
    • v.19 no.3
    • /
    • pp.296-302
    • /
    • 2017
  • Generally, a parking lot is constructed using asphalt or concrete. Such materials are impermeable, which means that a parking lot will directly release pollutants to any nearby water system during a rainfall event. An increased quantity of nonpoint source pollutants harms the ecohydrological system and causes further environmental damage leading to dysfunctional water circulation systems. Therefore, there is an urgent need for the design and application of Low Impact Development (LID) systems that allow more effective prevention of water circulation problems and management of nonpoint source pollution. This study aims to support such efforts by analyzing a permeable paver parking lot constructed using one of the LID techniques and comparing it to a conventional one in terms of the concentration of pollutants, nonpoint source pollution load and runoff rainfall lag effects during a rainfall event; it could serve as a reference for the construction of permeable paver parking lots in the future.

Assessment of Seasonal Variations in the Treatment Efficiency of Constructed Wetlands

  • Reyes, Nash Jett DG.;Geronimo, Franz Kevin F.;Choi, Hyeseon;Jeon, Minsu;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.231-231
    • /
    • 2020
  • Unlike conventional treatment technologies, the performance of nature-based facilities were susceptible to seasonal changes and climatological variabilities. This study evaluated the effects of seasonal variables on the treatment performance of constructed wetlands (CWs). Two CWs treating runoff and discharge from agricultural and livestock areas were monitored to determine the efficiency of the systems in reducing particulates, organics, and nutrients in the influent. For all four seasons, the mean effluent suspended solids concentration in the agricultural CW (ACW) increased by -2% to -39%. The occurrence of algal blooms in the system during summer and fall seasons resulted to the greatest increase in the amount of suspended materials in the overlying water. unlike ACW, the livestock CW (LCW) performed efficiently throughout the year, with mean suspended solids removal amounting to 61% to 68%. Algal blooms were still present in LCW seasonally; however, the constant inflow in the system limited the proliferation of phytoplankton through continuous flushing. The total nitrogen (TN) and total phosphorus (TP) removal efficiencies in ACW were higher during the summer (21% to 25%) and fall (8% to 21%) seasons since phytoplankton utilize nitrogen and phosphorus during the early stages of phytoplankton blooms. In the case of LCW, the most efficient reduction in TN (24%) and TP (54%) concentrations were also noted in summer, which can be attributed to the favorable environmental conditions for microbial activities. The mean removal of organics in ACW was lowest during summer season (-52% to 35%), wherein the onset of algal decay triggered a relative increase in organic matter and stimulate bacterial growth. The removal of organics in LCW was highest (54 % to 55%) during the fall and winter seasons since low water temperatures may limit the persistence of various algal species. Variations in environmental conditions due to seasonal changes can greatly affect the performance of CW systems. This study effectively established the contributory factors affecting the feasibility of utilizing CW systems for treating agricultural and livestock discharges and runoff.

  • PDF

Simulation of sediment reduction effects of VFS in uplands of Saemangeum watershed (새만금유역 밭경지 초생대 유사저감효과 모의)

  • Lee, Seul Gi;Jang, Jeong Ryeol;Choi, Kyung Sook
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.6
    • /
    • pp.535-542
    • /
    • 2018
  • The study was intended to simulate the sediment reduction effects of the Vegetative Filter Strip (VFS) in uplands of Saemangeum watershed through VFSMOD-W model application. The model was calibrated by using the field data and the simulation scenarios were designed based on the investigation of uplands characteristics in Saemangeum watershed. The simulation scenarios were considered various size and slope of uplands including 1 ha, 5 ha, 10 ha of field size with width-length ratio of 1 : 1 having 7% and 15% of slopes under the daily rainfall of 50 mm, 100 mm, 150 mm, and 200 mm in order to mimic the different fields conditions. The effluent reduction ranged from 2.9~13.5% and 2.9~12.1% for runoff, and 33.8~97.0% and 27.1~85.9% for sediment under the field's slope of 7% and 15%, respectively. The VFS reduction effects showed different degree of influence from field size, slope, rainfall amounts. Based on the simulated results, the sediment contributing non-point source pollution expected to be reduced in the condition of VFS constructed 10% of fields in outlet of less than 10 ha of uplands having less than 15% of the slope.

The development of land use planning technique applying low impact development and verifying the effects of non-point pollution reduction : a case study of Sejong city 6 district (저영향개발(LID)을 적용한 토지이용계획 기법 개발 및 적용효과 분석 : 세종시 6생활권을 대상으로)

  • Kang, Ki-Hoon;Lee, Kyung-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.7
    • /
    • pp.548-553
    • /
    • 2017
  • The aim of this study was to develop a low impact development design technique that can be applied in the land use planning stage and verify quantitatively the effects of non-point pollution reduction. For this purpose, the low impact development design elements that can be applied in the land use planning stage were derived and applied to an actual site, and the non-point pollution reduction effect was analyzed using the LIDMOD2 program. The analysis showed that the permeability rate of the land use plan using low impact development decreased by 19.8% compared to the existing land use plan. In addition, annual surface runoff decreased by 19.0% and annual infiltration increased by 164.1%. In the case of non-point pollution, the annual loading, T-N, T-P, and BOD decreased by 18.7 ~ 22.8%. Therefore, compared to the existing land use plan, the land use plan using low impact development has a considerably large effect of reducing the non-point pollution without changing the floor area according to each application. Therefore, to maximize the reduction effect of non-point pollution, it will be necessary to establish a related plan by applying the low impact development technique from the land use planning stage to the existing LID facility-oriented plan.

Effects of Air Drain and Confined Conditions to Infiltration Rate in Unsaturated Soils (불포화 토양에서 공기의 배출/제한이 침투속도에 미치는 영향)

  • Kim, Sangrae;Ki, Jaehong;Kim, Youngjin;Han, Mooyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.22 no.6
    • /
    • pp.681-687
    • /
    • 2008
  • It is well known that the water infiltration rate depends on soil properties such as soil water content, water head, capillary suction, density, hydraulic conductivity, and porosity. However, most of proposed infiltration models assume that the air phase is continuous and in equilibrium with the atmosphere or air compression and air entrapment on infiltration was not considered. This study presents experimental results on unsaturated water infiltration to relate air entrapment and hydraulic conductivity function based on soil air properties. The objectives of this study were to measure change of soil air pressure ahead of wetting front under air drain and air confined condition to find the confined air effect on infiltration rate, to reduce the entrapped air volume related with soil air pressure to increase the soil permeability, and to make a basis of infiltration process model for the purpose of improvement of infiltration rate in the homogeneous soil column. The results of the work show that soil air pressure increases according to increasement of the saturated soil depth rather than the wetting front depth during infiltration process.

Direct Runoff Reduction Analysis and Application Feasibility Evaluation of Vegetation-type Facilities (식생형시설의 직접유출량 저감 효과분석 및 적용 방법 타당성 검토)

  • Hanyong Lee;Won Hee Woo;Youn Shik Park
    • Journal of Korean Society of Rural Planning
    • /
    • v.30 no.2
    • /
    • pp.69-77
    • /
    • 2024
  • As impervious area increases due to urbanization, rainfall on the impervious area does not infiltrate into the ground, and stormwater drains quickly. Low impact development (LID) practices have been suggested as alternatives to infiltrate and store water in soil layers. The practices in South Korea is applied to urban development projects, urban renewal projects, urban regeneration projects, etc., it is required to perform literature research, watershed survey, soil quality, etc. for the LID practices implementation. Prior to the LID implementation at fields, there is a need to simulate its' effect on watershed hydrology, and Storm Water Management Model (SWMM) provides an opportunity to simulate LID practices. The LIDs applied in South Korea are infiltration-based practices, vegetation-based practices, rainwater-harvesting practices, etc. Vegetation-based practices includes bio-retention cell and rain garden, bio-retention cells are mostly employed in the model, adjusting the model parameters to simulate various practices. The bio-retention cell requires inputs regarding surface layer, soil layer, and drain layer, but the inputs for the drain layer are applied without sufficient examination, while the model parameters or inputs are somewhat influential to the practice effects. Thus, the approach to simulate vegetation-based LID practices in SWMM uses was explored and suggested for better LID simulation in South Korea.

Development of Coupled SWAT-SWMM to Evaluate Effects of LID on Flow Reduction in Complex Landuse (복합토지유역에서의 LID적용에 따른 유출량 저감효과 분석을 위한 SWAT-SWMM 연계모델 개발)

  • Woo, Won Hee;Ryu, Jichul;Moon, Jong Pill;Jang, Chun Hwa;Kum, Donghyuk;Kang, Hyunwoo;Kim, Ki-Sung;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.495-504
    • /
    • 2012
  • In recent years, urbanization has been a hot issues in watershed management due to increased pollutant loads from impervious urban areas. The Soil and Water Assessment Tool (SWAT) model has been widely used in hydrology and water quality studies at watershed scale. However, the SWAT has limitations in simulating water flows between HRUs and hydrological effects of LID practices. The Storm Water Management Model (SWMM) has LID capabilities, but it does not simulate non-urban areas, especially agricultural areas. In this study, a SWAT-SWMM coupled model was developed to evaluate effects of LID practices on hydrology and water quality at mixed-landuse watersheds. This coupled SWAT-SWMM was evaluated by comparing calibrated flow with and without coupled SWAT-SWMM. As a result of this study, the $R^2$ and NSE values with SWAT are 0.951 and 0.937 for calibration period, and 0.882 and 0.875 for validation period, respectively. the $R^2$ and NSE values with SWAT-SWMM are 0.877 and 0.880 for validation period. Out of four LID scenarios simulated by SWAT-SWMM model, the green roof scenario was found to be most effective which reduces about 25% of rainfall-runoff flows.

Analysis of Significance between SWMM Computer Simulation and Artificial Rainfall on Rainfall Runoff Delay Effects of Vegetation Unit-type LID System (식생유니트형 LID 시스템의 우수유출 지연효과에 대한 SWMM 전산모의와 인공강우 모니터링 간의 유의성 분석)

  • Kim, Tae-Han;Choi, Boo-Hun
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.3
    • /
    • pp.34-44
    • /
    • 2020
  • In order to suggest performance analysis directions of ecological components based on a vegetation-based LID system model, this study seeks to analyze the statistical significance between monitoring results by using SWMM computer simulation and rainfall and run-off simulation devices and provide basic data required for a preliminary system design. Also, the study aims to comprehensively review a vegetation-based LID system's soil, a vegetation model, and analysis plans, which were less addressed in previous studies, and suggest a performance quantification direction that could act as a substitute device-type LID system. After monitoring artificial rainfall for 40 minutes, the test group zone and the control group zone recorded maximum rainfall intensity of 142.91mm/hr. (n=3, sd=0.34) and 142.24mm/hr. (n=3, sd=0.90), respectively. Compared to a hyetograph, low rainfall intensity was re-produced in 10-minute and 50-minute sections, and high rainfall intensity was confirmed in 20-minute, 30-minute, and 40-minute sections. As for rainwater run-off delay effects, run-off intensity in the test group zone was reduced by 79.8% as it recorded 0.46mm/min at the 50-minute point when the run-off intensity was highest in the control group zone. In the case of computer simulation, run-off intensity in the test group zone was reduced by 99.1% as it recorded 0.05mm/min at the 50-minute point when the run-off intensity was highest. The maximum rainfall run-off intensity in the test group zone (Dv=30.35, NSE=0.36) recorded 0.77mm/min and 1.06mm/min in artificial rainfall monitoring and SWMM computer simulation, respectively, at the 70-minute point in both cases. Likewise, the control group zone (Dv=17.27, NSE=0.78) recorded 2.26mm/min and 2.38mm/min, respectively, at the 50-minutes point. Through statistical assessing the significance between the rainfall & run-off simulating systems and the SWMM computer simulations, this study was able to suggest a preliminary design direction for the rainwater run-off reduction performance of the LID system applied with single vegetation. Also, by comprehensively examining the LID system's soil and vegetation models, and analysis methods, this study was able to compile parameter quantification plans for vegetation and soil sectors that can be aligned with a preliminary design. However, physical variables were caused by the use of a single vegetation-based LID system, and follow-up studies are required on algorithms for calibrating the statistical significance between monitoring and computer simulation results.