Development of Coupled SWAT-SWMM to Evaluate Effects of LID on Flow Reduction in Complex Landuse

복합토지유역에서의 LID적용에 따른 유출량 저감효과 분석을 위한 SWAT-SWMM 연계모델 개발

  • Woo, Won Hee (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Ryu, Jichul (National Institute of Environmental Research Water Pollution Load Management Research Devision) ;
  • Moon, Jong Pill (National Academy of Agricultural Science) ;
  • Jang, Chun Hwa (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Kum, Donghyuk (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Kang, Hyunwoo (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Kim, Ki-Sung (Department of Regional Infrastructure Engineering, Kangwon National University) ;
  • Lim, Kyoung Jae (Department of Regional Infrastructure Engineering, Kangwon National University)
  • 우원희 (강원대학교 지역건설공학과) ;
  • 류지철 (국립환경과학원 수질총량연구과) ;
  • 문종필 (국립농업과학원) ;
  • 장춘화 (강원대학교 지역건설공학과) ;
  • 금동혁 (강원대학교 지역건설공학과) ;
  • 강현우 (강원대학교 지역건설공학과) ;
  • 김기성 (강원대학교 지역건설공학과) ;
  • 임경재 (강원대학교 지역건설공학과)
  • Published : 2012.07.30

Abstract

In recent years, urbanization has been a hot issues in watershed management due to increased pollutant loads from impervious urban areas. The Soil and Water Assessment Tool (SWAT) model has been widely used in hydrology and water quality studies at watershed scale. However, the SWAT has limitations in simulating water flows between HRUs and hydrological effects of LID practices. The Storm Water Management Model (SWMM) has LID capabilities, but it does not simulate non-urban areas, especially agricultural areas. In this study, a SWAT-SWMM coupled model was developed to evaluate effects of LID practices on hydrology and water quality at mixed-landuse watersheds. This coupled SWAT-SWMM was evaluated by comparing calibrated flow with and without coupled SWAT-SWMM. As a result of this study, the $R^2$ and NSE values with SWAT are 0.951 and 0.937 for calibration period, and 0.882 and 0.875 for validation period, respectively. the $R^2$ and NSE values with SWAT-SWMM are 0.877 and 0.880 for validation period. Out of four LID scenarios simulated by SWAT-SWMM model, the green roof scenario was found to be most effective which reduces about 25% of rainfall-runoff flows.

Keywords

References

  1. 국립환경과학원(2010). 수질오염총량관리를 위한 유역관리 모델 적용방안 연구, pp. 5.
  2. 국립환경과학원(2011). 팔당 상수원 수질에 미치는 점오염원 및 비점오염원의 영향도 비교 평가(I), pp. 3.
  3. 권준희, 박인혁, 하성룡(2010). LID기법 적용에 의한 SCS-CN값 변화가 강우유출 특성에 미치는 영향 분석, 환경영향평가, 19(1), pp. 49-57.
  4. 경기개발연구원(2010). 수질오염총량관리계획 수립시 장기 유출 모형의 적용방안, pp. 15-17.
  5. 김남원, 신아현, 김철겸(2009). 충주댐 유역의 SWAT-K와 HSPF모형에 의한 수문성분 모의특성 비교 분석, 한국환경과학회지, 18(6), pp. 609-619.
  6. 류지철, 강현우, 김남원, 장원석, 이지원, 문종필, 이규승, 임경재(2010). SWAT-REMM 모형을 이용한 봉곡천 유역의 수변림 조성에 따른 총 질소 저감 효율 분석, 수질보전한국물환경학회지, 26(6), pp. 910-918.
  7. 박윤식, 김종건, 박준호, 전지홍, 최동혁, 김태동, 최중대, 안재훈, 김기성, 임경재(2007). 임하댐 유역의 유사 거동 모의를 위한 SWAT 모델의 적용성 평가, 수질보전 한국물환경학회지, 23(4), pp. 467-473.
  8. 박준호, 유용구, 박명곤, 윤희택, 김종건, 박윤식, 전지홍, 임경재(2008). SWMM을 이용한 춘천 거두 1지구의 LID 개념 적용으로 인한 유출 감소 특성 분석, 수질보전 한국물환경학회지, 24(6), pp. 806-816.
  9. MT뉴스(2011). http://news.mt.co.kr/.
  10. 오동근, 정세웅, 류인구, 강문성(2010). SWMM을 이용한 도시화 유역 불투수율 변화에 따른 강우유출특성 분석, 수질보전 한국물환경학회지, 26(1), pp. 61-70.
  11. 이재용, 장성호, 박진식(2008). 도시지역 비점오염 관리를 위한 SWMM의 적용, 한국환경보건학회지, 34(3), pp. 247-254.
  12. 원주지방환경청(2009). 중권역 물환경관리계획, pp. 11.
  13. 장재호, 윤춘경, 정광욱, 김형철(2010). SWAT 모델을 이용한 경안천 유역의 수질관리 영향 평가, 수질보전 한국물환경학회지, 26(3), pp. 387-398.
  14. 장주영, 박해식, 박청길(2006). GIS기반 SWMM모형을 이용한 하수도시스템 선정에 따른 도시하천 수질개선효과의 정량적 분석, 수질보전 한국물환경학회지, 22(6), pp. 982-990.
  15. 정재운, 장정렬, 임병진, 이영재, 김갑순, 강재홍, 박혜린, 조소현, 윤광식(2011). SWAT 자동보정기능을 이용한 새만금유역에서의 유출량 모의, 한국수처리학회지, 19(1), pp. 11-17.
  16. 최재완, 신민환, 천세억, 신동석, 이성준, 문선정, 류지철, 임경재(2010). GeoWEPP을 이용한 침엽수림 지역 유출특성 예측 및 다양한 식생 피도에 따른 유출량 평가, 수질보전 한국물환경학회지, 27(4), pp. 425-432.
  17. 최희선(2011). 종합적 토지이용 계획을 위한 저영향 개발 기법, 여름호, 물이 있는 세상, pp. 32-42.
  18. 환경부(2004). 수질오염총량관리 업무편람, pp. 3.
  19. 환경지리정보 서비스(2011). http://egis.me.go.kr/.
  20. Arnold, J. G. (1992). Spatial Scale Variability in Model Development and Parameterization, Ph.D. Dissertation, Purdue University, West Lafayette, IN. pp. 1-186.
  21. Arnold, J. G. and Srinivasan, R. (1994). Integration of a BASIN-SCALE Water Quality Model with GIS, Water Resources Bulletin, Journal of American Water Resources Association, pp. 453-462.
  22. Arnold, J. G., Srubuvasan, R., Muttiah, R. S., and Wiliams, J. R. (1998). Large Area Hydrologic Modeling and Assessment: Part I: Model Development, Journal of American Water Resources Association, 34(1), pp. 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  23. Bicknell, B. R., Imhoff, J. C., Kittle, Jr., J. L., Jobes, T. H., and Donigan, Jr., A. S. (2001). Hydrologic Simulation Program - Fortran (HSPF) User's Manual for Version 12, U.S. Environmental Protection Agency, National Exposure Research Laboratory, Athens, G.A. pp. 1-843.
  24. Jang, W. S. (2010). Development of the SWAT DWDM for Accurate Estimation of Soil Erosion from Agricultural Dominant Watershed, Master's Degree, Kangwon National University, pp. 48-50.
  25. Jha, M., Gassman, P. W., Secchi, S., Gu, R., and Arnold, J. G. (2004). Effect of Watershed Subdivision on SWAT flow, Sediment and Nutrient Predictions, Journal of the American Water Resources Association, 40(3), pp. 811-825. https://doi.org/10.1111/j.1752-1688.2004.tb04460.x
  26. Leavesley, G. H., Lichty, R. W., Troutman, B. M., and Saindon, L. G. (1983). Precipitation-runoff Modeling System-User's Manual, U.S Geological Survey Water Resources Investigation Report, pp. 83-4238.
  27. Lewis A. R. (2010). Storm Water Management Model User's Manual Version 5.0. EPA, pp. 1-285.
  28. Metcalf & Eddy Inc., University of Florida, Water Resource Engineers Inc. (1971). Storm Water Management Model, Volume 1-final Report, U.S. Environmental Protection Agency, pp. 1-370.
  29. Pitt, R. (2004). WinSLAMM and Low Impact Development, Paper Presented at the Putting the LID on Stormwater Management, College Park, MD, pp. 13.
  30. Prince George's County. (1999). Low-impact Development Design Strategies: An Integrated Design Approach, Prince George's County, MD Department of Environmental Resources, pp. 1-150.
  31. Srinivasan, R. and Engel, B. A. (1991). Effect of Slope Prediction Methods on Slope and Erosion Estimates, Applied Engineering in Agriculture, 7(6), pp. 779-783.
  32. US EPA (2000). Low Impact Development (LID), a Literature Review, United States Environmental Protection Agency, EPA-841-B-00-005, pp. 1-33.