• Title/Summary/Keyword: running resistance

Search Result 172, Processing Time 0.026 seconds

Maneuvering simulation of an X-plane submarine using computational fluid dynamics

  • Cho, Yong Jae;Seok, Woochan;Cheon, Ki-Hyeon;Rhee, Shin Hyung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.843-855
    • /
    • 2020
  • X-plane submarines show better maneuverability as they have much longer span of control plane than that of cross plane submarines. In this study, captive model tests were conducted to evaluate the maneuverability of an X-plane submarine using Computational Fluid Dynamics (CFD) and a mathematical maneuvering model. For CFD analysis, SNUFOAM, CFD software specialized in naval hydrodynamics based on the open-source toolkit, OpenFOAM, was applied. A generic submarine Joubert BB2 was selected as a test model, which was modified by Maritime Research Institute Netherlands (MARIN). Captive model tests including propeller open water, resistance, self-propulsion, static drift, horizontal planar motion mechanism and vertical planar motion mechanism tests were carried out to obtain maneuvering coefficients of the submarine. Maneuvering simulations for turning circle tests were performed using the maneuvering coefficients obtained from the captive model tests. The simulated trajectory showed good agreement with that of free running model tests. From the results, it was proved that CFD simulations can be applicable to obtain reliable maneuvering coefficients for X-plane submarines.

Traffic-induced vibrations at the wet joint during the widening of concrete bridges and non-interruption traffic control strategies

  • Junyong Zhou;Zunian Zhou;Liwen Zhang;Junping Zhang;Xuefei Shi
    • Computers and Concrete
    • /
    • v.32 no.4
    • /
    • pp.411-423
    • /
    • 2023
  • The rapid development of road transport has increased the number of bridges that require widening. A critical issue in the construction of bridge widening is the influence of vibrations of the old bridge on the casting of wet joint concrete between the old and new bridges owing to the running traffic. Typically, the bridge is closed to traffic during the pouring of wet joint concrete, which negatively affects the existing transportation network. In this study, a newly developed microscopic traffic load modeling approach and the vehicle-bridge interaction theory are incorporated to develop a refined numerical framework for the analysis of random traffic-bridge coupled dynamics. This framework was used to investigate traffic-induced vibrations at the wet joint of a widened bridge. Based on an experimental study on the vibration resistance of wet joint concrete, traffic control strategies were proposed to ensure the construction performance of cast-in-site wet joint concrete under random traffic without interruption. The results show that the vibration displacement and frequency of the old bridge, estimated by the proposed framework, were comparable with those obtained from field measurements. Based on the target peak particle velocity and vibration amplitude of the wet joint concrete, it was found that traffic control measures, such as limiting vehicle gross weight and limiting traffic volume by closing an additional traffic lane, could ensure the construction performance of the wet joint concrete.

Cardio-pulmonary Adaptation to Physical Training (운동훈련(運動訓練)에 대(對)한 심폐기능(心肺機能)의 적응(適應)에 관(關)한 연구(硏究))

  • Cho, Kang-Ha
    • The Korean Journal of Physiology
    • /
    • v.1 no.1
    • /
    • pp.103-120
    • /
    • 1967
  • As pointed out by many previous investigators, the cardio-pulmonary system of well trained athletes is so adapted that they can perform a given physical exercise more efficiently as compared to non-trained persons. However, the time course of the development of these cardio-pulmonary adaptations has not been extensively studied in the past. Although the development of these training effects is undoubtedly related to the magnitude of an exercise load which is repeatedly given, it would be practical if one could maintain a good physical fitness with a minimal daily exercise. Hence, the present investigation was undertaken to study the time course of the development of cardio-pulmonary adaptations while a group of non-athletes was subjected to a daily 6 to 10 minutes running exercise for a period of 4 weeks. Six healthy male medical students (22 to 24 years old) were randomly selected as experimental subjects, and were equally divided into two groups (A and B). Both groups were subjected to the same daily running exercise (approximately 1,000 kg-m). 6 days a week for 4 weeks, but the rate of exercise was such that the group A ran on treadmill with 8.6% grade for 10 min daily at a speed of 127 m/min while the group B ran for 6 min at a speed of 200 m/min. In order to assess the effects of these physical trainings on the cardio-pulmonary system, the minute volume, the $O_2$ consumption, the $CO_2$ output and the heart rate were determined weekly while the subject was engaged in a given running exercise on treadmill (8.6% grade and 127 m/min) for a period of 5 min. In addition, the arterial blood pressure, the cardiac output, the acid-base state of arterial blood and the gas composition of arterial blood were also determined every other week in 4 subjects (2 from each group) while they were engaged in exercise on a bicycle ergometer at a rate of approximately 900 kg m/min until exhaustion. The maximal work capacity was also determined by asking the subject to engage in exercise on treadmill and ergometer until exhaustion. For the measurement of minute volume, the expired gas was collected in a Douglas bag. The $O_2$ consumption and the $CO_2$ output were subsequently computed by analysing the expired gas with a Scholander micro gas analyzer. The heart rate was calculated from the R-R interval of ECG tracings recorded by an Offner RS Dynograph. A 19 gauge Cournand needle was inserted into a brachial artery, through which arterial blood samples were taken. A Statham $P_{23}AA$ pressure transducer and a PR-7 Research Recorder were used for recording instantaneous arterial pressure. The cardiac output was measured by indicator (Cardiogreen) dilution method. The results may be summarized as follows: (1) The maximal running time on treadmill increased linearly during the 4 week training period at the end of which it increased by 2.8 to 4.6 times. In general, an increase in the maximal running time was greater when the speed was fixed at a level at which the subject was trained. The mammal exercise time on bicycle ergometer also increased linearly during the training period. (2) In carrying out a given running exercise on treadmill (8.6%grade, 127 m/min), the following changes in cardio·pulmonary functions were observed during the training period: (a) The minute volume as well as the $O_2$ consumption during steady state exercise tended to decrease progressively and showed significant reductions after 3 weeks of training. (b) The $CO_2$ production during steady state exercise showed a significant reduction within 1 week of training. (c) The heart rate during steady state exercise tended to decrease progressively and showed a significant reduction after 2 weeks of training. The reduction of heart rate following a given exercise tended to become faster by training and showed a significant change after 3 weeks. Although the resting heart rate also tended to decrease by training, no significant change was observed. (3) In rallying out a given exercise (900 kg-m/min) on a bicycle ergometer, the following change in cardio-vascular functions were observed during the training period: (3) The systolic blood pressure during steady state exercise was not affected while the diastolic blood Pressure was significantly lowered after 4 weeks of training. The resting diastolic pressure was also significantly lowered by the end of 4 weeks. (b) The cardiac output and the stroke volume during steady state exercise increased maximally within 2 weeks of training. However, the resting cardiac output was not altered while the resting stroke volume tended to increase somewhat by training. (c) The total peripheral resistance during steady state exercise was greatly lowered within 2 weeks of training. The mean circulation time during exorcise was also considerably shortened while the left heart work output during exercise increased significantly within 2 weeks. However, these functions_at rest were not altered by training. (d) Although both pH, $P_{co2}\;and\;(HCO_3-)$ of arterial plasma decreased during exercise, the magnitude of reductions became less by training. On the other hand, the $O_2$ content of arterial blood decreased during exercise before training while it tended to increase slightly after training. There was no significant alteration in these values at rest. These results indicate that cardio-pulmonary adaptations to physical training can be acquired by subjecting non-athletes to brief daily exercise routine for certain period of time. Although the time of appearance of various adaptive phenomena is not identical, it may be stated that one has to engage in daily exercise routine for at least 2 weeks for the development of significant adaptive changes.

  • PDF

Development of a programming logic to estimate the wall friction coefficient in vehicle tunnels with piston effects (교통환기력이 작용하는 터널 내 벽면마찰계수 추정을 위한 프로그램 로직 개발)

  • Kim, Hyo-Gyu;Choi, Pan-Gyu;Ryu, Ji-Oh;Lee, Young-Hoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.39-53
    • /
    • 2018
  • Generally, the total ventilation resistance coefficient in a tunnel consists of inlet/outlet loss coefficient, wall friction coefficient, and other loss coefficient caused by sudden expansion and contraction of cross-section, etc. For the tunnel before opening, when the running ventilation fan is stopped, the wind speed in the tunnel is reduced by the total ventilation resistance drag. The velocity decay method is comparatively stable and easy to estimate the wall friction coefficient in the pre-opening tunnel. However, the existing study reported that when the converging wind speed is a negative value after the ventilation fan stops, it is difficult to estimate the wall friction coefficient according to the velocity decay method. On the other hand, for the operating tunnel in which the piston effect acts, a more complex process is performed; however, a reasonable wall friction coefficient can be estimated. This paper aims at suggesting a method to minimize the measurement variables of the piston effect and reviewing a method that can be applied to the operating tunnel. Also, in this study, a new method has been developed, which enables to calculate an variation of the piston effect if the piston effect is constant with a sudden change of external natural wind occurring while the wind speed in the tunnel decreases after the ventilation fan stops, and a programming logic has been also developed, which enables dynamic simulation analysis in order to estimate the wall friction coefficient in a tunnel.

Characteristics of Membrane Filtration as a Post Treatment to Anaerobic Digestion (혐기성 소화의 후처리로서 분리막의 여과특성 연구)

  • Choo, Kwang-Ho;Lee, Chung-Hak;Pek, Un-Hwa;Koh, Ui-Chan;Kim, Sang-Won;Koh, Jong-Ho
    • Applied Chemistry for Engineering
    • /
    • v.3 no.4
    • /
    • pp.730-738
    • /
    • 1992
  • Filtration characteristics according to membrane materials were studied In the ultrafiltration of anaerobic digestion broth as a post treatment method. A series of resistances for different membranes were quantitatively assessed on the basis of the resistance-in-series model. Flux behavior observed with the digestion broth was irrelevant to initial water permeabilities of each membrane. The fluoro polymer membrane showed the most significant improvement of flux with increase of cross-flow velocity, which suggests that the cake layer formed on this membrane is more weakly attached to the membrane surface than those on the other membranes. Flux reduction during longtime running was attrib-used to the polarization layer resistance ($R_p$) as well as the fouling layer resistance($R_f$). Continuous increase of $R_p$ may reflect the variation in the characteristics of cake layers, which could result from size, shape, and structure changes due to lysis and growth of biomass. Hydrophilic cellulosic membrane had a much lower fouling tendency than hydrophobic polysulfone membrane. The depressurization method induced a small increase in flux of $5-10L/m^2/h$. During washing and cleaning, filtrability of each membrane was rapidly recovered within 15 minutes until a stationary value was reached.

  • PDF

Study on the Behavior of Curved Track in Honam High-Speed Line considering the Running Performanace for HEMU 430-X (HEMU 430-X 주행특성을 고려한 호남고속철도 곡선궤도구조의 거동연구)

  • Kang, Yun-Suk;Um, Ki-Young;Kim, Seog-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.8
    • /
    • pp.4068-4076
    • /
    • 2013
  • The wheel-rail interaction forces are influenced by the velocity of vehicle, wheel load, alignment (curve radius, cant etc). For the safety of track structure, it is required to evaluate the influences for track and influential factors. Recently, the HEMU 430-X, which was developed by Next Generation High-Speed Rail Development R&D Project, achieved 421.4km/h in a test run of Daegu.Busan section of the Gyeongbu high speed rail on March in 2013. In the case of additional speed-up test on Test-Bed Section(Gongju.Jeongeup: KP 100~128km Osong starting point), the analysis of track forces is required for outer rail by the increase of dynamic force and centrifugal force of vehicle. In this paper, the vehicle speed variation on HSL line is evaluated by TPS analysis considering the tractive effort of HEMU 430-X, tested running resistance and alignment of Honam HSR. And the track forces are evaluated by centrifugal force and impact factor on curved track.

Real-scale Accelerated Testing to Evaluate Long-term Performance for Bridge/Earthwork Transition Structure Reinforced by Geosynthetics and Cement Treated Materials (토목섬유와 시멘트처리채움재로 보강한 교량/토공 접속구조의 장기공용성 평가를 위한 실물가속시험)

  • Lee, Il-Wha;Choi, Won-Il;Cho, Kook-Hwan;Lee, Kang-Myung;Min, Kyung-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.251-259
    • /
    • 2014
  • The transition zone between an earthwork and a bridge effect to the vehicle's running stability because support stiffness of the roadbed is suddenly changed. The design criteria for the transition structure on ballast track were not particular in the past. However with the introduction of concrete track is introduced, it requires there is a higher performance level required because of maintenance and running stability. In this present paper, a transition structure reinforced with geosynthetics is suggested to improve the performance of existing bridge-earthwork transition structures. The suggested transition structure, in which there is reinforcing of the approach block using high-tension geosynthetics, has a structure similar to that of earth reinforced abutments. The utilized backfill materials are cement treated soil and gravel. These materials are used to reduce water intrusion into the approach block and to increase the recycling of surplus earth materials. An experiment was performed under the same conditions in order to allow a comparison of this new structure with the existing transition structure. Evaluation items are elastic displacement, cumulative settlement, and earth pressure. As for the results of the real-scale accelerated testing, the suggested transition structure has excellent performance for the reduction of earth pressure and settlement. Above all, it has high resistance the variation of the water content.

Effect of a combination of resistance and aerobic exercise training on angiogenesis-related protein expression in different type of skeletal muscle of aged rats (저항성 운동과 유산소 운동 훈련의 병행이 노화쥐 골격근 유형별 혈관신생 관련 단백질 발현에 미치는 영향)

  • Yeo, Hyo-Seong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.750-761
    • /
    • 2021
  • This study was performed to observe the responses of angiogenesis-related protein expression in skeletal muscle of aged rats by regular resistance exercise training with aerobic exercise. For the purpose of the study, naturally aged SD rats (20-24 months, N=18) were used and divided into control (CON, n=6), resistance exercise (RE, n=6), and resistance + aerobic exercise (RE + AE, n=6) groups. RE group performed 3 sets × 4 exercises each session using a ladder for laboratory animals, and RE +AE group performed 2 sets × 3 times of ladder climbing and additional treadmill running (30 min) each session. After 8 weeks of exercise training, soleus muscle and extensor digitorum longus muscle (EDL) were extracted and used for analysis. Western blot was performed to analyze the expression levels of angiogenesis-related proteins (HIF-1α, VEGF, FLK-1, Ang-1, Ang-2) in skeletal muscle. As a result of the study, the expression of HIF-1α, VEGF, FLK-1, Ang-1, and Ang-2 proteins in soleus muscle (type I muscle) was higher in RE +AE than in CON group, and HIF-1α, VEGF, Ang-1, Ang-2 protein expression of RE group was higher than that of CON group. Furthermore, Ang-2 to Ang-1 ratio of RE + AE group was higher than that of RE group, showing differences by exercise type. In EDL muscle (type II muscle), HIF-1α was increased only by RE group, whereas VEGF and FLK-1 protein expressions were increased in both training types, and no difference was observed between the types of exercise training. In addition, there was no difference in angiopoieitin protein expressions in EDL muscle by exercise training. Therefore, in aging, regular exercise training induces skeletal muscle angiogenic response regardless of exercise type, and in particular, the combination of aerobic exercise with resistance exercise may have an additional positive effect on angiogenesis in type I muscle.

Study on the Microstructural Degradation of the Boiler Tubes for Coal-Fired Power Plants

  • Yoo, Keun-Bong;He, Yinsheng;Lee, Han-Sang;Bae, Si-Yeon;Kim, Doo-Soo
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.4 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • A boiler system transforms water to pressured supercritical steam which drives the running of the turbine to rotate in the generator to produce electricity in power plants. Materials for building the tube system face challenges from high temperature creep damage, thermal fatigue/expansion, fireside and steam corrosion, etc. A database on the creep resistance strength and steam oxidation of the materials is important to the long-term reliable operation of the boiler system. Generally, the ferritic steels, i.e., grade 1, grade 2, grade 9, and X20, are extensively used as the superheater (SH) and reheater (RH) in supercritical (SC) and ultra supercritcal (USC) power plants. Currently, advanced austenitic steel, such as TP347H (FG), Super304H and HR3C, are beginning to replace the traditional ferritic steels as they allow an increase in steam temperature to meet the demands for increased plant efficiency. The purpose of this paper is to provide the state-of-the-art knowledge on boiler tube materials, including the strengthening, metallurgy, property/microstructural degradation, oxidation, and oxidation property improvement and then describe the modern microstructural characterization methods to assess and control the properties of these alloys. The paper covers the limited experience and experiment results with the alloys and presents important information on microstructural strengthening, degradation, and oxidation mechanisms.

The Effect of Combined Training at Different Times of Day on Body Composition, Plasma Lipids, Stress Hormones and Nutrient Intakes (하루 중 다른 시간대에 실시한 복합 트레이닝이 신체조성, 혈중지질, 스트레스 호르몬 및 영양소 섭취량에 미치는 영향)

  • Lee, Kyoung-Young;Kim, Si-Young;Jun, Tae-Won
    • Korean Journal of Community Nutrition
    • /
    • v.11 no.1
    • /
    • pp.143-151
    • /
    • 2006
  • Regular exercise training improves body composition, blood lipid profiles and exercise adaptation. This study was conducted to investigate the effect of exercise training at different times of day on body composition, blood lipids, stress hormones and nutrient intakes. Twenty four male graduate students carried out this experiment. The subjects were divided into three groups; morning exercise group, evening exercise group and control group. Two exercise groups performed running and muscular resistance training at mid intensity for 12 week periods. Body composition, blood lipid profiles, blood cortisol, ACTH and nutrient intakes were analyzed prior to, midway and after training. There were significant differences about interaction between different exercise times and training periods in plasma TG and HDL-C of the evening exercise training (p < 0.05). Also the evening exercise group was showed the decreasing of TC after training (p < 0.05). No significant differences about interaction between different exercise times and training periods were shown in body composition, stress hormones and nutrient intakes in the three groups. But evening exercise training decreased body fat ($\%$) and blood ACTH (p < 0.05). Also the increasing of carbohydrate intakes was shown by the evening exercise training (p < 0.05). In contrast, morning exercise group indicated a decrease of body fat ($\%$) after 6 week training (p < 0.05), but this effect was not maintained after 12 weeks of training. These results suggested that regular evening exercise is more effect than morning exercise from the viewpoint of improving body composition, blood lipids, nutrient intakes and exercise adaptation.