DOI QR코드

DOI QR Code

Development of a programming logic to estimate the wall friction coefficient in vehicle tunnels with piston effects

교통환기력이 작용하는 터널 내 벽면마찰계수 추정을 위한 프로그램 로직 개발

  • Received : 2017.11.24
  • Accepted : 2018.01.03
  • Published : 2018.01.31

Abstract

Generally, the total ventilation resistance coefficient in a tunnel consists of inlet/outlet loss coefficient, wall friction coefficient, and other loss coefficient caused by sudden expansion and contraction of cross-section, etc. For the tunnel before opening, when the running ventilation fan is stopped, the wind speed in the tunnel is reduced by the total ventilation resistance drag. The velocity decay method is comparatively stable and easy to estimate the wall friction coefficient in the pre-opening tunnel. However, the existing study reported that when the converging wind speed is a negative value after the ventilation fan stops, it is difficult to estimate the wall friction coefficient according to the velocity decay method. On the other hand, for the operating tunnel in which the piston effect acts, a more complex process is performed; however, a reasonable wall friction coefficient can be estimated. This paper aims at suggesting a method to minimize the measurement variables of the piston effect and reviewing a method that can be applied to the operating tunnel. Also, in this study, a new method has been developed, which enables to calculate an variation of the piston effect if the piston effect is constant with a sudden change of external natural wind occurring while the wind speed in the tunnel decreases after the ventilation fan stops, and a programming logic has been also developed, which enables dynamic simulation analysis in order to estimate the wall friction coefficient in a tunnel.

일반적으로 터널 내 총환기저항계수는 입출구 손실계수, 벽면마찰계수 그리고 급격한 확대나 축소단면 등에 의해 발생하는 부차적 손실계수의 총합으로 구성된다. 개통 전 터널의 경우는 가동 중인 환기팬을 중단하게 되면, 터널 내 풍속은 총환기저항력에 의해 감소하는 현상이 나타난다. 즉, 속도감쇄법은 개통 전 터널에서 비교적 안정적이면서도 손쉽게 터널 내 벽면마찰계수를 추정하는 방법이다. 그러나 기존의 선행연구에서 환기팬의 가동을 중단 후 수렴되는 풍속이 음수일 경우는 속도감쇄법에 따른 벽면마찰계수의 추정이 곤란한 특성이 있다. 반면 교통환기력이 작용하는 공용 중인 터널에서는 좀더 복잡한 과정을 거치지만, 합리적인 벽면마찰계수를 추정할 수 있다. 본 연구에서는 교통환기력의 측정변수를 최소화할 수 있는 방법을 제안하였고, 공용 중 터널에 적용할 수 있는 방법을 고찰하였다. 또한 환기팬 정지 후 터널 내 풍속이 감소하는 동안에 외부 자연풍의 급격한 변화가 발생하여도 교통환기력이 일정할 경우에 대하여, 교통환기력의 증분을 계산할 수 있는 방법과 터널 내 벽면마찰계수를 추정할 수 있도록 동적 시뮬레이션이 가능한 프로그램 로직을 개발하였다.

Keywords

References

  1. Bruin, A., Maarsingh, R., Swart, L. (1997), "New attempts to solve an old problem: aerodynamic measurements in new vehicle tunnels", Proceedings of 9th International Conference on Aerodynamics and Ventilation of Vehicle Tunnels, pp. 3-23.
  2. Jang, H.M., Chen, F. (2002), "On the determination of the aerodynamic coefficients of highway tunnels", Journal of Wind Engineering and Industrial Aerodynamic, Vol. 8, pp. 869-896.
  3. KICT (2014), The research of the road tunnel ventilation guidelines establishment considering the economics (1st Final Report), Korea Institute of Civil Engineering and Building Technology, pp. 129-142.
  4. Kim, H.G. (2000), A study on natural ventilation in local vehicle tunnels, Master's Thesis, Dong-A University, pp. 80-86.
  5. Kim, H.G., You, S.J., Lee, J.W., Lee, C.W. (2000), "In-situ measurement for ventilation resistance coefficient in road tunnels", Proceedings of 74th Korean Society of Mineral and Energy Resources Engineers, pp. 223-225.
  6. Lee, K.B. (2005), A study on the aerodynamic coefficients in local vehicle tunnels, Master's Thesis, Dong-A University, pp. 30-57.
  7. Lee, K.B., Lee, C.W., Kim, H.G. (2004), "An in-situ study of the wall friction coefficient in road tunnels", Proceedings of Korean Society for Rock Mechanics, pp. 61-72.
  8. Lew, J.O., Rie, D.H. (2002), An experimental study on friction loss factor for attachment method of illuminator in tunnel, R&D Center of In-Cheon University (ISSN 1225-4509), pp. 183-190.
  9. Lotsberg, G. (1997), "Investigation of the wall-friction, pressure distribution, and the effectiveness of big jet fans with deflection blades in the Fodnes tunnel in Norway", Proceedings of the 9th Aerodynamics and Ventilation of Vehicle Tunnels, pp. 25-41.
  10. MOLIT (Ministry of Land, Infrastructure and Transport) (2011), Road design manual (617. ventilation), pp. 617-45-617-46.
  11. MOLIT (Ministry of Land, Infrastructure and Transport) (2016), Guidelines for fire prevention equipment's installation and management in road tunnels, pp. 60-63.
  12. Munson, B.R., Young, D.F., Okiishi, T.H. (2002), Fundamental of Fluid Mechanics, 4th Edition, John Wiley & Sons, Inc., New York, pp. 443-521.
  13. Park, Y.D. (1990), Fluid Mechanics, Bosung-munhwasa, Seoul, pp. 145-188 (Original Edition: John, J.E.A., Haberman, W.L. (1980), Introduction to Fluid Mechanics, 2nd Edition).