• Title/Summary/Keyword: running convolution

Search Result 17, Processing Time 0.024 seconds

Design and Implementation of low-power short-length running convolution filter using filter banks (필터 뱅크를 사용한 저전력 short-length running convolution 필터 설계 및 구현)

  • Jang Young-Beom
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.4
    • /
    • pp.625-634
    • /
    • 2006
  • In this paper, an efficient and fast algorithm to reduce calculation amount of FIR(Finite Impulse Responses) filtering is proposed. Proposed algorithm enables arbitrary size of parallel processing, and their structures are also easily derived. Furthermore, it is shown that the number of multiplication/sample is remarkably reduced. For theoretical improvement, numbers of sub filters are compared with those of conventional algorithm. In addition to the theoretical improvement, it is shown that number of element for hardwired implementation are reduced comparison to those of the conventional algorithm.

  • PDF

Efficient short-length running convolution algorithm using filter banks (필터 뱅크를 사용한 효율적인 short-length running convolution 알고리즘)

  • Jang Young-Beom;Oh Se-Man;Lee Won-Sang
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.187-194
    • /
    • 2005
  • In this paper, an efficient and fast algerian to reduce calculation amount of FIR(Finite Impulse Responses) filtering is proposed. Proposed algorithm enables arbitrary size of parallel processing, and their structures are also easily derived. Furthermore, it is shown that the number of multiplication/sample is reduced, and number of instructions using MAC(Multiplication and Accumulation) processor are also reduced. For theoretical improvement numbers of sub filters are compared with those of conventional algorithm. In addition to the theoretical improvement, it is shown that number of element for hardwired implementation are reduced comparison to those of the conventional algorithm.

Visualization of Internal Electric Field on Plasma (플라즈마 내부 전기장 가시화)

  • Shin, Han Sol;Yu, Tae Jun;Lee, Kun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.1
    • /
    • pp.80-85
    • /
    • 2016
  • It costs high in both memory usage and time consuming to sample the space to compute charge density and calculate electric field on that with large size of plasma data. In real-time and interactive application, accelerating the compute time is critical problem. In this paper, we suggest new method to visualize electric field by using convolution theorem, and the parallel computing to accelerate computing time by using GPGPU. We conduct a simulation that compare running time between the methods with convolution and without convolution. We discussed the method of visualization of multivariate data in three dimensional space using colored volume rendering and surface construction.

Low power filter structure using Short-length running convolution (Short-length running convolution을 사용한 저전력 필터 구조)

  • Oh, Se-Man;Lee, Won-Sang;Jang, Young-Beom
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.263-264
    • /
    • 2006
  • In this paper, an efficient and fast algorithm to reduce calculation amount of FIR(Finite Impulse Responses) filtering is proposed. Proposed algorithm enables arbitrary size of parallel processing, and their structures are also easily derived. Furthermore, it is shown that the number of multiplication/sample is reduced, and number of instructions using MAC(Multiplication and Accumulation) processor are also reduced. For theoretical improvement, numbers of sub filters are compared with those of conventional algorithm. In addition to the theoretical improvement, it is shown that number of element for hardwired implementation are reduced comparison to those of the conventional algorithm.

  • PDF

Image Semantic Segmentation Using Improved ENet Network

  • Dong, Chaoxian
    • Journal of Information Processing Systems
    • /
    • v.17 no.5
    • /
    • pp.892-904
    • /
    • 2021
  • An image semantic segmentation model is proposed based on improved ENet network in order to achieve the low accuracy of image semantic segmentation in complex environment. Firstly, this paper performs pruning and convolution optimization operations on the ENet network. That is, the network structure is reasonably adjusted for better results in image segmentation by reducing the convolution operation in the decoder and proposing the bottleneck convolution structure. Squeeze-and-excitation (SE) module is then integrated into the optimized ENet network. Small-scale targets see improvement in segmentation accuracy via automatic learning of the importance of each feature channel. Finally, the experiment was verified on the public dataset. This method outperforms the existing comparison methods in mean pixel accuracy (MPA) and mean intersection over union (MIOU) values. And in a short running time, the accuracy of the segmentation and the efficiency of the operation are guaranteed.

Motion generation using Center of Mass (무게중심을 활용한 모션 생성 기술)

  • Park, Geuntae;Sohn, Chae Jun;Lee, Yoonsang
    • Journal of the Korea Computer Graphics Society
    • /
    • v.26 no.2
    • /
    • pp.11-19
    • /
    • 2020
  • When a character's pose changes, its center of mass(COM) also changes. The change of COM has distinctive patterns corresponding to various motion types like walking, running or sitting. Thus the motion type can be predicted by using COM movement. We propose a motion generator that uses character's center of mass information. This generator can generate various motions without annotated action type labels. Thus dataset for training and running can be generated full-automatically. Our neural network model takes the motion history of the character and its center of mass information as inputs and generates a full-body pose for the current frame, and is trained using simple Convolutional Neural Network(CNN) that performs 1D convolution to deal with time-series motion data.

Improved Sliding Shapes for Instance Segmentation of Amodal 3D Object

  • Lin, Jinhua;Yao, Yu;Wang, Yanjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.11
    • /
    • pp.5555-5567
    • /
    • 2018
  • State-of-art instance segmentation networks are successful at generating 2D segmentation mask for region proposals with highest classification score, yet 3D object segmentation task is limited to geocentric embedding or detector of Sliding Shapes. To this end, we propose an amodal 3D instance segmentation network called A3IS-CNN, which extends the detector of Deep Sliding Shapes to amodal 3D instance segmentation by adding a new branch of 3D ConvNet called A3IS-branch. The A3IS-branch which takes 3D amodal ROI as input and 3D semantic instances as output is a fully convolution network(FCN) sharing convolutional layers with existing 3d RPN which takes 3D scene as input and 3D amodal proposals as output. For two branches share computation with each other, our 3D instance segmentation network adds only a small overhead of 0.25 fps to Deep Sliding Shapes, trading off accurate detection and point-to-point segmentation of instances. Experiments show that our 3D instance segmentation network achieves at least 10% to 50% improvement over the state-of-art network in running time, and outperforms the state-of-art 3D detectors by at least 16.1 AP.

Motor noise removal for determining gait events over treadmill walking using wavelet filter

  • Yeom, Ho-Jun;Selgrade, Brian P.;Chang, Young-Hui;Kim, Jung-Lae
    • International journal of advanced smart convergence
    • /
    • v.1 no.1
    • /
    • pp.48-51
    • /
    • 2012
  • The conventional method for filtering force plate data, low-pass filtering, does not always give accurate results when applied to force data from a custom-made, instrumented treadmill. Therefore, this study compares low-pass filtered data to the same data passed through a wavelet filter. We collected data with the treadmill running. However these include motor noise with ground reaction force at two force plates. We found that he proposed wavelet method eliminated motor noise to result in more accurate force plate data than the conventional low-pass filter, particularly at high speed motor operation. In this study we suggested the convolution wavelet (CNW) which was compared to that of a low-pass filter. The CNW showed better performance as compared to band-pass filtering particularly for low signal-to-noise ratios, and a lower computational load.

Enhanced Stereo Matching Algorithm based on 3-Dimensional Convolutional Neural Network (3차원 합성곱 신경망 기반 향상된 스테레오 매칭 알고리즘)

  • Wang, Jian;Noh, Jackyou
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.16 no.5
    • /
    • pp.179-186
    • /
    • 2021
  • For stereo matching based on deep learning, the design of network structure is crucial to the calculation of matching cost, and the time-consuming problem of convolutional neural network in image processing also needs to be solved urgently. In this paper, a method of stereo matching using sparse loss volume in parallax dimension is proposed. A sparse 3D loss volume is constructed by using a wide step length translation of the right view feature map, which reduces the video memory and computing resources required by the 3D convolution module by several times. In order to improve the accuracy of the algorithm, the nonlinear up-sampling of the matching loss in the parallax dimension is carried out by using the method of multi-category output, and the training model is combined with two kinds of loss functions. Compared with the benchmark algorithm, the proposed algorithm not only improves the accuracy but also shortens the running time by about 30%.

Convolutional neural network-based iris lesion classification algorithm (컨볼루션 신경망 기반 홍채 병변 분류 알고리즘 설계)

  • Seo, Jin-Beom;Cho, Young-Bok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.295-296
    • /
    • 2021
  • In iris diagnostics, iris changes in its area on the iris map when abnormal changes in human tissues and organs occur in response to changes in color and iris structure. This makes it possible to determine the long-term condition in which an abnormal change has occurred, and to determine the presence or absence of a congenital illness. In this paper, we design a neural network algorithm that is displayed on the iris and classifies lesions by using a convolution neural network that has the advantage of advancing learning using images of various dip-running neural networks.

  • PDF