Acknowledgement
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1C1B5083789).
In iris diagnostics, iris changes in its area on the iris map when abnormal changes in human tissues and organs occur in response to changes in color and iris structure. This makes it possible to determine the long-term condition in which an abnormal change has occurred, and to determine the presence or absence of a congenital illness. In this paper, we design a neural network algorithm that is displayed on the iris and classifies lesions by using a convolution neural network that has the advantage of advancing learning using images of various dip-running neural networks.
홍채 진단학에서 홍채는 색과 홍채 구조의 변화에 따라 인간 조직, 장기들의 비정상적인 변화가 생길시 홍채지도상 해당 영역에 변화가 발생한다. 이를 통해 비정상적인 변화가 생긴 장기의 상태를 판단하거나 선천적으로 가지고 있는 병변의 유무를 판단할 수 있다. 본 논문에서는 다양한 딥러닝 신경망 중 이미지를 이용하여 학습을 진행하는데 강점을 가지고 있는 컨볼루션 신경망을 이용하여 홍채상에 나타난 병변을 분류하는 신경망 알고리즘을 설계할 것이다.
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2018R1C1B5083789).