• Title/Summary/Keyword: ruminal pH

Search Result 427, Processing Time 0.031 seconds

Changes in ruminal fermentable characteristics and nutrient degradabilities of corn flake according to chamber type in Hanwoo: chamber type for corn flake in the rumen of Hanwoo

  • Ahn, Jun-Sang;Shin, Jong-Suh;Chung, Ki-Yong;Lim, Hwan;Choi, Jang-Gun;Kim, Ji-Hyung;Kwon, Eung-Gi;Park, Byung-Ki
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.4
    • /
    • pp.695-706
    • /
    • 2018
  • This study was conducted to investigate the effect of a steam chamber type on the ruminal fermentable characteristics and nutrient degradabilities of corn flakes in Hanwoo. Three Hanwoo equipped with a ruminal fistula were used as experimental animals. There were two treatments: Corn flake using a steam chamber (CFSC, 1.0 atm - $100^{\circ}C$ 96 min) or corn flake using a pressurized steam chamber (CFPSC, 1.5 atm - $111^{\circ}C$ 12 min), respectively. In the in vitro trial, the ruminal pH was significantly lower in the CFPSC than in the CFSC (p < 0.01). The ammonia concentration was increased by 14.1% in the CFPSC compared to the CFSC (p < 0.05). The concentration of acetic acid was higher in the CFSC than in the CFPSC (p < 0.01). The concentrations of propionate, butyrate and total-VFA at 24 and 48 h were higher in the CFPSC than in the CFSC (p < 0.05). In the in situ trial, the degradability of dry matter was significantly higher in the CFSC than in the CFSC (p < 0.01). In addition, the degradabilities of starch and crude protein were significantly higher in the CFSC than in the CFSC (p < 0.01). Thus, the present results indicate that the pressurized steam chamber could be recommended to improve the feed value of corn flake according to the increase in the starch degradability and volatile fatty acid production.

Effects of Supplementing Aqueous Direct-Fed Microbials on In Vitro Fermentation and Fibrolytic Enzyme Activity in the Ruminant Nutrition (반추가축영양에 있어서 액상미생물제제의 첨가가 In Vitro 발효성상과 섬유소분해효소활성에 미치는 영향)

  • Lee, S.H.;Seo, I.J.
    • Journal of Animal Science and Technology
    • /
    • v.47 no.5
    • /
    • pp.789-804
    • /
    • 2005
  • This study was conducted to determine effects of supplementation levels of aqueous direct-fed microbials (DFM; Bacillus spp.) to TMR(exp. 1.) and aqueous DFM addition under the various ratios of starch and cellulose(exp. 2.) on ruminal fermentation and fibrolytic enzyme activity. In experiment 1, ruminal fluids taken from rumen-cannulated Holstein cows were incubated during 24 hr by using TMR as substrates. Aqueous DFM was applied at a rate of 0, 0.025 and 0.05%, respectively. The pH of 0.025% treatment was not significantly different from that of control at 6 and 9 hr, but it was significantly lower (P<0.05) than 0.05% treatment. Concentrations of ammonia-N and VFAs were not affected by supplementing aqueous DFM. The A:P ratio of 0.05% treatment was significantly increased(P<0.05) by supplementation of aqueous DFM as compared with that of control at 24 hr. Although overall fibrolytic enzyme activities were not significantly affected by supplementing aqueous DFM, CMCase(carboxymethylcellulase) activity showed significant increase(P<0.05) compared to control at 6hr. However, the xylanase activity of 0.05% treatment significantly decreased(P<0.05) at 12 hr due to the application of aqueous DFM. There was no significant difference for in vitro dry matter disappearance among treatments. In experiment 2, ruminal fluids were incubated under the condition of various ratios of starch to cellulose(90:10, 70:30, 50:50, 30:70 and 10:90) with or without aqueous DFM(0.025%). Ruminal pH was unaffected by the addition of aqueous DFM, however, as increased level of starch, ruminal pH partially showed significant decrease(P<0.05). Ammonia-N concentration was not affected by aqueous DFM and ratio of starch and cellulose. On 9 hr incubation, DFM addition at a ratio of 70:30 showed significantly (P<0.05) lower value of ammonia-N(35.65 mg/dL) than that(65.05 mg/dL) of control. Concentrations of VFAs were significantly increased(P<0.05) by aqueous DFM addition compared with control at the same ratio on 6 hr incubation. The overall CMCase activity was not affected by aqueous DFM addition. However, the xylanase activity by aqueous DFM partially showed significant differences at the ratios of 90:10, 30:70 and 10:90. Our results indicated that supplementation of aqueous DFM did not significantly improve in vitro fermentation and fibrolytic enzyme activity. In addition, the DFM utilized in this study did not show consistent results by having various effects on ruminal fermentation under different feeding regimens.

Effect of Total Mixed Ration with Fermented Feed on Ruminal In vitro Fermentation, Growth Performance and Blood Characteristics of Hanwoo Steers

  • Kim, S.H.;Alam, M.J.;Gu, M.J.;Park, K.W.;Jeon, C.O.;Ha, Jong-K.;Cho, K.K.;Lee, S.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.2
    • /
    • pp.213-223
    • /
    • 2012
  • In this study, two experiments were conducted to evaluate the total mixed ration with fermented feed (TMRF) and total mixed ration (TMR) by rumen in vitro fermentation and their effects on the growth performance and blood characteristics of Hanwoo steers. In experiment 1, three Hanwoo steers ($600{\pm}47$ kg), each permanently fitted with a ruminal cannula were used. In this experiment, three diets designated as T1, TMRF (18.4% fermented feed, tall fescue, mammoth wild rye forage and whole crop barley); T2, TMRF (17.7% fermented feed, rice straw and whole crop barley); and T3, TMR (rice straw, whole crop barley and probiotics, but no fermented feed), which were subjected to rumen in vitro fermentation for 48 h. The results demonstrated that DM disappearance rate gradually increased with advancing fermentation time, but T1 and T2 were higher than the T3 (p<0.05) from 3 h to 12 h, but insignificant (p>0.05) at 24 and 48 h. None of the specific VFAs were affected except for acetic and non volatile lactic acids, which were produced more in T2 than in T1 and T3 at 24 h and 48 h of incubation. A/P was lower in T1 and T2 than inT3 at 24 h (p<0.05) and 48 h (p>0.05) of incubation. These results confirmed that TMRF-related treatment shows a superior performance to that of TMR during the ruminal fermentation period. In experiment 2, the three diets in experiment 1 plus 1 more control diet (concentrates, probiotics and 2% rice straw of body weight) were fed to the 48 Hanwoo steers ($160{\pm}10$ kg) for a period of 168 d. The results demonstrated that the daily and total live weight gain and feed efficiency were higher (p<0.05) in the TMRF and TMR groups than in the control group. SGOT, SGPT and BUN (p<0.05) were reduced in TMRF relative to the control and TMR groups by 168 d which confirmed that TMRF shows better blood profiles than the TMR and control groups. Overall, these results appear to show that TMRF has better in vitro ruminal characteristics than those of TMR; growth performance and blood profiles were also found to be superior in TMRF than in the TMR and control groups. Thus, our findings suggest that TMRF-based feed supplies are favorable for Hanwoo cattle.

Effects of Increasing Inclusion Levels of Rumen Cellulolytic Bacteria Culture on In vivo Ruminal Fermentation Patterns in Hanwoo Heifers (반추위 섬유소분해 박테리아 배양액의 투여 수준에 따른 한우 반추위 발효에 미치는 영향)

  • Park, Joong-Kook;Jeong, Chan-Sung;Park, Do-Yeun;Kim, Hyun-Cheol;Lee, Seung-Cheol;Kim, Chang-Hyun
    • Journal of Animal Science and Technology
    • /
    • v.51 no.1
    • /
    • pp.45-52
    • /
    • 2009
  • This experiment was conducted to observe the effects of anaerobic cellulolytic bacteria culture (Ruminococcus flavefaciens H-20 and Fibrobactor succinogenes H-23) on in vivo ruminal fermentation characteristics in Hanwoo heifers. Four ruminally cannulated Hanwoo heifers ($221\pm7.5kg$) receiving a basal diet containing 3 kg of mixture hay (tall fescue and ochardgrass) and 2 kg of concentrate per day were in a $4\times4$ Latin square with 21-day periods. Treatments were the basal diet without the culture additive (control), the basal diet plus 50 ml/day of bacteria culture of H-20 and H-23 (1%), 150 ml/day of H-20 and H-23 (3%), and 250 ml/day of H-20 and H-23 (5%). In the whole experimental periods, ruminal pH did not differ between treatments. However, the concentration of ruminal ammonia-N was increased in the 3% treatment relative to control and the 1% treatment at 1 hr post-feeding (p<0.05). Avicelase and CMCase (carboxymethyl cellulase) activities in rumen fluid showed no significant difference among treatments. However, xylanase activity was higher in the 5% (119.49, xylose ${\mu}mol$/ml/min) than the 3% treatment (71.02, xylose ${\mu}mol$/ml/min) at 0 hr post-feeding (p<0.05). Concentrations of ruminal total VFA, acetate, propionate and valerate were unaffected by treatments, while butyrate was higher in the 3% treatment (24.48 mM) than control (15.71 mM) at 1 hr post-feeding (p<0.05). Results indicate that minimum 3% inclusion of cellulolytic bacteria cultures improved ruminal fermentation, especially ammonia-N concentration and butyric acid production.

Effects of Temperature during Moist Heat Treatment on Ruminal Degradability and Intestinal Digestibility of Protein and Amino Acids in Hempseed Cake

  • Karlsson, Linda;Ruiz-Moreno, M.;Stern, M.D.;Martinsson, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.11
    • /
    • pp.1559-1567
    • /
    • 2012
  • The objective of this study was to evaluate ruminal degradability and intestinal digestibility of crude protein (CP) and amino acids (AA) in hempseed cake (HC) that were moist heat treated at different temperatures. Samples of cold-pressed HC were autoclaved for 30 min at 110, 120 or $130^{\circ}C$, and a sample of untreated HC was used as the control. Ruminal degradability of CP was estimated, using the in situ Dacron bag technique; intestinal CP digestibility was estimated for the 16 h in situ residue using a three-step in vitro procedure. AA content was determined for the HC samples (heat treated and untreated) of the intact feed, the 16 h in situ residue and the residue after the three-step procedure. There was a linear increase in RUP (p = 0.001) and intestinal digestibility of RUP (p = 0.003) with increasing temperature during heat treatment. The $130^{\circ}C$ treatment increased RUP from 259 to 629 g/kg CP, while intestinal digestibility increased from 176 to 730 g/kg RUP, compared to the control. Hence, the intestinal available dietary CP increased more than eight times. Increasing temperatures during heat treatment resulted in linear decreases in ruminal degradability of total AA (p = 0.006) and individual AA (p<0.05) and an increase in intestinal digestibility that could be explained both by a linear and a quadratic model for total AA and most individual AA (p<0.05). The $130^{\circ}C$ treatment decreased ruminal degradability of total AA from 837 to 471 g/kg, while intestinal digestibility increased from 267 to 813 g/kg of rumen undegradable AA, compared with the control. There were differences between ruminal AA degradability and between intestinal AA digestibility within all individual HC treatments (p<0.001). It is concluded that moist heat treatment at $130^{\circ}C$ did not overprotect the CP of HC and could be used to shift the site of CP and AA digestion from the rumen to the small intestine. This may increase the value of HC as a protein supplement for ruminants.

Effects of Non-ionic Surfactants on Enzyme Distributions of Rumen Contents, Anaerobic Growth of Rumen Microbes, Rumen Fermentation Characteristics and Performances of Lactating Cows

  • Lee, S.S.;Ahn, B.H.;Kim, H.S.;Kim, C.H.;Cheng, K.-J.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.1
    • /
    • pp.104-115
    • /
    • 2003
  • A series of experiments was carried out to determine the possibility for the non-ionic surfactant (NIS) as a feed additive for ruminant animals. The effect of the NIS on (1) the enzyme distribution in the rumen fluids of Hereford bulls, (2) the growth of pure culture of rumen bacteria and (3) rumen anaerobic fungi, (4) the ruminal fermentation characteristics of Korean native cattle (Hanwoo), and (5) the performances of Holstein dairy cows were investigated. When NIS was added to rumen fluid at the level of 0.05 and 0.1% (v/v), the total and specific activities of cell-free enzymes were significantly (p<0.01) increased, but those of cell-bound enzymes were slightly decreased, but not statistically significant. The growth rates of ruminal noncellulolytic species (Ruminobacter amylophilus, Megasphaera elsdenii, Prevotella ruminicola and Selenomonas ruminantium) were significantly (p<0.01) increased by the addition of NIS at both concentrations tested. However, the growth rate of ruminal cellulolytic bacteria (Fibrobacter succinogenes, Ruminococcus albus, Ruminococcus flavefaciens and Butyrivibrio fibrisolvens) were slightly increased or not affected by the NIS. In general, NIS appears to effect Gram-negative bacteria more than Gram-positive bacteria; and non-cellulolytic bacteria more than cellulolytic bacteria. The growth rates of ruminal monocentric fungi (Neocallimastix patriciarum and Piromyces communis) and polycentric fungi (Orpinomyces joyonii and Anaeromyces mucronatus) were also significantly (p<0.01) increased by the addition of NIS at all concentrations tested. When NIS was administrated to the rumen of Hanwoo, Total VFA and ammonia-N concentrations, the microbial cell growth rate, CMCase and xylanase activities in the rumen increased with statistical difference (p<0.01), but NIS administration did not affect at the time of 0 and 9 h post-feeding. Addition of NIS to TMR resulted in increased TMR intake and increased milk production by Holstein cows and decreased body condition scores. The NEFA and corticoid concentrations in the blood were lowered by the addition of NIS. These results indicated that the addition of NIS may greatly stimulate the release of some kinds of enzymes from microbial cells, and stimulate the growth rates of a range of anaerobic ruminal microorganisms, and also stimulate the rumen fermentation characteristics and animal performances. Our data indicates potential uses of the NIS as a feed additive for ruminant animals.

Effect of orally administrated fluids in artificially dehydrated ruminant (인공적으로 탈수를 일으킨 반추류에서 몇가지 수액의 경구투여 효과)

  • Kang, Dong-mook;Yang, Il-suk;Lee, In-se
    • Korean Journal of Veterinary Research
    • /
    • v.30 no.1
    • /
    • pp.15-27
    • /
    • 1990
  • Effects of oral administration of electrolyte solutions were studied in experimentally dehydrated adult sheep. By the latin square method five ruminal fistulated sheep were examined and dehydrated by deprivation of feed and water for 72 hours. Tap water, physiological saline, 0.45% NaCl+120 mM/L glucose and 0.9% NaCl+1% propylene glycol solution were orally administrated after dehydration, respectively. Rehydration effect and modification of the rumen function were compared. 1. After 72 hours of deprivation of feed and water, sheep were hypertonic dehydrated and blood acid-base parameters were not significantly changed. And there was marked increase in ruminal pH and decrease in ruminal total volatile fatty acid(VFA) concentration. 2. After the fluids administration the changes in blood acid-base parameters were not significant in all groups. 3. Although glucose fermentation in the rumen was observed, 0.45% NaCl+120 mM/L glucose was more effective in rehydration than physiological saline and tap water. But it was difficult to know the rehydration effect of 0.9% NaCl+1% propylene glycol solution exactly because of excessive increase in plasma osmolality. 4. After refeeding, total concentration and proportions of ruminal volatile fatty acid(VFA) were not significantly different among groups and recovered to normal concentration but not in proportions after 2 days in all groups. 5. In vitro cultured ruminal protozoa were susceptible to the decrease of the pH and osmolality.

  • PDF

Effects of Sorghum Hybrid and Grain Supplementation of Silage-Based Diets on Nutrient Digestibilities and Passage Rates and Ruminal Metabolism in Growing Steers

  • Bolsen, K.K.;Dalke, B.S.;Sonon, R.N. Jr.;Young, M.A.;Huck, G.L.;Harbers, L.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.10 no.4
    • /
    • pp.391-397
    • /
    • 1997
  • Six medium-framed steers, fitted with ruminal cannulas, were utilized in a $6{\times}6$ Latin square design with a $3{\times}2$ arrangement of treatments to determine the effects of sorghum hybrid and grain supplementation on nutrient digestibilities and passage rates and ruminal metabolism of silage-based diets fed to growing steers. The diets consisted of three wholes-plant silages (a high grain-containing, grain sorghum and middle-season, moderate grain-containing, and late-season, low grain-containing forage sorghums), each fed with or without 25% rolled grain sorghum. No significant interactions occurred between sorghum hybrid and grain supplementation for the digestion or passage rate criteria measured. Ruminal butyrate concentration was the only fermentation characteristic affected by a hybrid ${\times}$ grain supplementation interaction. The grain sorghum silage diets had the highest DM, OM, and ADF digestibilities; the late-season silage diets, the lowest. Digestibility of NDF tended to be highest (p < 0.10) for the grain sorghum silage, whereas starch digestibility was not affected by sorghum hybrid. Ruminal ammonia, acetate, propionate, butyrate, and total VFA concentrations were highest for the grain sorghum silage diets. Grain supplementation increased DM and OM digestibilities, but had no effect on digestibilities of NDF, ADF, and starch. Ruminal pH was decreased, but total VFA concentration and acetate : propionate ratio were not affected by grain supplementation.

Influence of Sunflower Whole Seeds or Oil on Ruminal Fermentation, Milk Production, Composition, and Fatty Acid Profile in Lactating Goats

  • Morsy, T.A.;Kholif, S.M.;Kholif, A.E.;Matloup, O.H.;Salem, A.Z.M.;Elella, A. Abu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1116-1122
    • /
    • 2015
  • This study aimed to investigate the effect of sunflower seeds, either as whole or as oil, on rumen fermentation, milk production, milk composition and fatty acids profile in dairy goats. Fifteen lactating Damascus goats were divided randomly into three groups (n = 5) fed a basal diet of concentrate feed mixture and fresh Trifolium alexandrinum at 50:50 on dry matter basis (Control) in addition to 50 g/head/d sunflower seeds whole (SS) or 20 mL/head/d sunflower seeds oil (SO) in a complete randomized design. Milk was sampled every two weeks during 90 days of experimental period for chemical analysis and rumen was sampled at 30, 60, and 90 days of the experiment for ruminal pH, volatile fatty acids (tVFA), and ammonia-N determination. Addition of SO decreased (p = 0.017) ruminal pH, whereas SO and SS increased tVFA (p<0.001) and acetate (p = 0.034) concentrations. Serum glucose increased (p = 0.013) in SO and SS goats vs Control. The SO and SS treated goats had improved milk yield (p = 0.007) and milk fat content (p = 0.002). Moreover, SO increased milk lactose content (p = 0.048) and feed efficiency (p = 0.046) compared to Control. Both of SS and SO increased (p<0.05) milk unsaturated fatty acids content specially conjugated linolenic acid (CLA) vs Control. Addition of SS and SO increased (p = 0. 021) C18:3N3 fatty acid compared to Control diet. Data suggested that addition of either SS or SO to lactating goats ration had beneficial effects on milk yield and milk composition with enhancing milk content of healthy fatty acids (CLA and omega 3), without detrimental effects on animal performance.

Substitution of Wheat for Corn in Beef Cattle Diets: Digestibility, Digestive Enzyme Activities, Serum Metabolite Contents and Ruminal Fermentation

  • Liu, Y.F.;Zhao, H.B.;Liu, X.M.;You, W.;Cheng, H.J.;Wan, F.C.;Liu, G.F.;Tan, X.W.;Song, E.L.;Zhang, X.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.10
    • /
    • pp.1424-1431
    • /
    • 2016
  • The objective of this study was to evaluate the effect of diets containing different amounts of wheat, as a partial or whole substitute for corn, on digestibility, digestive enzyme activities, serum metabolite contents and ruminal fermentation in beef cattle. Four Limousin${\times}$LuXi crossbred cattle with a body weight ($400{\pm}10kg$), fitted with permanent ruminal, proximal duodenal and terminal ileal cannulas, were used in a $4{\times}4$ Latin square design with four treatments: Control (100% corn), 33% wheat (33% substitution for corn), 67% wheat (67% substitution for corn), and 100% wheat (100% substitution for corn) on a dry matter basis. The results showed that replacing corn with increasing amounts of wheat increased the apparent digestibility values of dry matter, organic matter, and crude protein (p<0.05). While the apparent digestibility of acid detergent fiber and neutral detergent fiber were lower with increasing amounts of wheat. Digestive enzyme activities of lipase, protease and amylase in the duodenum were higher with increasing wheat amounts (p<0.05), and showed similar results to those for the enzymes in the ileum except for amylase. Increased substitution of wheat for corn increased the serum alanine aminotransferase concentration (p<0.05). Ruminal pH was not different between those given only corn and those given 33% wheat. Increasing the substitution of wheat for corn increased the molar proportion of acetate and tended to increase the acetate-to-propionate ratio. Cattle fed 100% wheat tended to have the lowest ruminal $NH_3-N$ concentration compared with control (p<0.05), whereas no differences were observed among the cattle fed 33% and 67% wheat. These findings indicate that wheat can be effectively used to replace corn in moderate amounts to meet the energy and fiber requirements of beef cattle.