• 제목/요약/키워드: ruminal fermentation and digestibility

검색결과 174건 처리시간 0.021초

Effects of Different Levels of Concentrate in Complete Rations on Nutrient Digestibilities and Ruminal Metabolites in Sheep and Growth Performance in Korean Native Bulls

  • Baik, M.G.;Ha, J.K.;Kim, W.Y.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제10권4호
    • /
    • pp.371-377
    • /
    • 1997
  • Objective of the present study were to investigate effects of different levels of concentrate in complete rations on nutrient digestibilities and ruminal fermentation in sheep and growth performance in Korean native bulls. Increasing levels of concentrate (35, 50, 65, and 80% of complete rations) improved digestibilities of dry matter (DM), crude protein (CP) and ether extract (EE) without affecting digestibility of neutral detergent (NDF) and acid detergent fiber (ADF). Increasing levels of concentrate decreased ruminal fluid pH but increased concentrations of $NH_3-N$, propionic acid, and total volatile fatty acids (VFA). Both the disappearance rates of DM and nitrogen (N) in an in sacco study were linearly increased as the levels of concentrate in complete rations increased. Meanwhile, increasing levels of concentrate in complete rations improved growth rate and feed conversion ratio in Korean native bulls. In conclusion, the complete rations containing 80% concentrate showed better digestibility and energy supply than those of the lower levels (35, 50 and 65%) of concentrate of the rations, resulting in improved growth performance of Korean native bulls.

Influence of Fiber Content and Concentrate Level on Chewing Activity, Ruminal Digestion, Digesta Passage Rate and Nutrient Digestibility in Dairy Cows in Late Lactation

  • Tafaj, M.;Kolaneci, V.;Junck, B.;Maulbetsch, A.;Steingass, H.;Drochner, W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권8호
    • /
    • pp.1116-1124
    • /
    • 2005
  • The influence of fiber content of hay (low-fiber 47% NDF and high-fiber 62% NDF of DM) and concentrate level (high 50% and low 20% of ration DM) on chewing activity, passage rate and nutrient digestibility were tested on four restrict-fed (11.1 to 13.7 kg DM/d) Holstein cows in late lactation. Aspects of ruminal fermentation and digesta particle size distribution were also investigated on two ruminally cannulated (100 mm i.d.) cows of the same group of animals. All digestion parameters studied were more affected by the fiber content of the hay and its ratio to non structural carbohydrates than by the concentrate level. Giving a diet of high-fiber (62% NDF) hay and low concentrate level (20%) increased chewing activity but decreased solid passage rate and total digestibility of nutrients due to a limited availability of fermentable OM in the late cut fiber rich hay. A supplementation of high-fiber hay with 50% concentrate in the diet seems to improve the ruminal digestion of cell contents, whilst a depression of the ruminal fiber digestibility was not completely avoided. Giving a diet of low-fiber (47% NDF) hay and high concentrate level (50%) reduced markedly the chewing and rumination activity, affected negatively the rumen conditions and, consequently, the ruminal digestion of fiber. A reduction of the concentrate level from 50 to 20% in the diet of low-fiber hay improved the rumen conditions as reflected by an increase of the ruminal solid passage rate and of fiber digestibility and in a decrease of the concentration of large particles and of the mean particle size of the rumen digesta and of the faeces. Generally, it can be summarised that, (i) concentrate supplementation is not a strategy to overcome limitations of low quality (fiber-rich) hay, and (ii) increase of the roughage quality is an effective strategy in ruminant nutrition, especially when concentrate availability for ruminants is limited.

Effects of Plant Herb Combination Supplementation on Rumen Fermentation and Nutrient Digestibility in Beef Cattle

  • Wanapat, M.;Kang, S.;Khejornsart, P.;Wanapat, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권8호
    • /
    • pp.1127-1136
    • /
    • 2013
  • Four rumen-fistulated crossbred beef cattle (Brahman native) were randomly assigned according to a $4{\times}4$ Latin square design experiment to be fed plant herb supplements in their concentrate mixture. The treatments were: without herb supplementation (Control), lemongrass meal supplementation at 100 g/d (L), lemongrass meal supplementation at 100 g/d plus peppermint powder at 10 g/d (LP), and lemongrass meal supplementation at 100 g/d plus peppermint powder at 10 g/d with garlic powder 40 g/d (LPG), respectively. Based on the present study, the DMI and apparent digestibility of DM, OM, aNDF and ADF were not affected by dietary herb supplementation while CP digestibility tended to be decreased by herb supplement. Moreover, $NH_3$-N and BUN were decreased in all herb supplemented treatments and there was a tendency to an increase in ruminal pH in all herb supplemented groups. While there was no change in TVFA and C4 among lemongrass treatments, C2 was decreased in all herb supplemented treatments while C3 was increased. Methane production by calculation was the lowest in the LP and LPG groups. Population sizes of bacteria and protozoa were decreased in all herb supplemented groups, but not fungal zoospores. In all supplemented groups, total viable and proteolytic bacteria were decreased, while amylolytic and cellulolytic bacteria were similar. More importantly, in all herb supplemented groups, there were higher N balances, while there was no difference among treatments on purine derivative (PD) excretion or microbial N. Based on the results above, it could be concluded that there was no negative effect on ruminal fermentation characteristics and nutrient utilization by plant herb supplement, but protozoal population and $CH_4$ production were reduced. Thus, lemongrass alone or in combination with peppermint and garlic powder could be used as feed additives to improve rumen fermentation efficiency.

Cricket (Gryllus bimaculatus) meal pellets as a protein supplement to improve feed efficiency, ruminal fermentation and microbial protein synthesis in Thai native beef cattle

  • Burarat Phesatcha;Kampanat Phesatcha;Maharach Matra;Metha Wanapat
    • Animal Bioscience
    • /
    • 제36권9호
    • /
    • pp.1384-1392
    • /
    • 2023
  • Objective: Replacing soybean meal (SBM) with cricket (Gryllus bimaculatus) meal pellets (CMP) in concentrate diets was investigated for feed efficiency, ruminal fermentation and microbial protein synthesis in Thai native beef cattle. Methods: Four male beef cattle were randomly assigned to treatments using a 4×4 Latin square design with four levels of SBM replaced by CMP at 0%, 33%, 67%, and 100% in concentrate diets. Results: Results revealed that replacement of SBM with CMP did not affect dry matter (DM) consumption, while digestibilities of crude protein, acid detergent fiber and neutral detergent fiber were significantly enhanced (p<0.05) but did not alter digestibility of DM and organic matter. Increasing levels of CMP up to 100% in concentrate diets increased ruminal ammoniacal nitrogen (NH3-N) concentrations, blood urea nitrogen, total volatile fatty acids and propionate concentration (p<0.05), whereas production of methane and protozoal populations decreased (p<0.05). Efficiency of microbial nitrogen protein synthesis increased when SBM was replaced with CMP. Conclusion: Substitution of SBM with CMP in the feed concentrate mixture at up to 100% resulted in enhanced nutrient digestibility and rumen fermentation efficiency, with increased volatile fatty acids production, especially propionate and microbial protein synthesis, while decreasing protozoal populations and mitigating rumen methane production in Thai native beef cattle fed a rice straw-based diet.

Influence of polymer-coated slow-release urea on total tract apparent digestibility, ruminal fermentation and performance of Nellore steers

  • Gardinal, R.;Calomeni, G.D.;Consolo, N.R.B.;Takiya, C.S.;Freitas, J.E. Jr;Gandra, J.R.;Vendramini, T.H.A.;Souza, H.N.;Renno, F.P.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권1호
    • /
    • pp.34-41
    • /
    • 2017
  • Objective: Two experiments were performed to evaluate the effects of coated slow-release urea on nutrient digestion, ruminal fermentation, nitrogen utilization, blood glucose and urea concentration (Exp 1), and average daily gain (ADG; Exp 2) of steers. Methods: Exp 1: Eight ruminally fistulated steers [$503{\pm}28.5kg$ body weight (BW)] were distributed into a d $4{\times}4$ Latin square design and assigned to treatments: control (CON), feed grade urea (U2), polymer-coated slow-release urea A (SRA2), and polymer-coated slow-release urea B (SRB2). Dietary urea sources were set at 20 g/kg DM. Exp 2: 84 steers ($350.5{\pm}26.5kg$ initial BW) were distributed to treatments: CON, FGU at 10 or 20 g/kg diet DM (U1 and U2, respectively), coated SRA2 at 10 or 20 g/kg diet DM (SRA1 and SRA2, respectively), and coated SRB at 10 or 20 g/kg diet DM (SRB1 and SRB2, respectively). Results: Exp 1: Urea treatments (U2+SRA2+SRB2) decreased (7.4%, p = 0.03) the DM intake and increased (11.4%, p<0.01) crude protein digestibility. Coated slow-release urea (SRA2+-SRB2) showed similar nutrient digestibility compwared to feed grade urea (FGU). However, steers fed SRB2 had higher (p = 0.02) DM digestibility compared to those fed SRA2. Urea sources did not affect ruminal fermentation when compared to CON. Although, coated slow-release urea showed lower (p = 0.01) concentration of $NH_3-N$ (-10.4%) and acetate to propionate ratio than U2. Coated slow-release urea showed lower (p = 0.02) urinary N and blood urea concentration compared to FGU. Exp 2: Urea sources decreased (p = 0.01) the ADG in relation to CON. Animals fed urea sources at 10 g/kg DM showed higher (12.33%, p = 0.01) ADG compared to those fed urea at 20 g/kg DM. Conclusion: Feeding urea decreased the nutrient intake without largely affected the nutrient digestibility. In addition, polymer-coated slow-release urea sources decreased ruminal ammonia concentration and increased ruminal propionate production. Urea at 20 g/kg DM, regardless of source, decreased ADG compared both to CON and diets with urea at 10 g/kg DM.

Influence of Mentha×piperita L. (Peppermint) Supplementation on Nutrient Digestibility and Energy Metabolism in Lactating Dairy Cows

  • Hosoda, K.;Nishida, T.;Park, W.Y.;Eruden, B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제18권12호
    • /
    • pp.1721-1726
    • /
    • 2005
  • The characteristic smell of cow milk was suppressed when herbs were consumed by lactating dairy cows. But it is unclear whether or not peppermint ingestion affects the nutritional and milk production parameters in lactating dairy cows. The objective of this study was to examine the effect of peppermint feeding to lactating dairy cows on nutrient digestibility, energy metabolism, ruminal fermentation and milk production. Eight Holstein cows were given a diet supplemented with or without 5% of dried peppermint per diet on a dry matter basis. The digestion of nutrients from cows fed the diet with peppermint was significantly lower than that of the control group. Energy loss as methane and methane released from cows receiving the peppermint treatment was significantly lower than that in the control cows. Peppermint feeding to cows resulted in the promotion of thermogenesis. However, ruminal fermentation and milk production were not affected by peppermint feeding. In conclusion, peppermint ingestion by lactating dairy cows reduces the nutrient digestibility and methanogenesis, and changes energy metabolism.

Effects of replacement of para-grass with oil palm compounds on body weight, food intake, nutrient digestibility, rumen functions and blood parameters in goats

  • Buranakarl, C.;Thammacharoen, S.;Semsirmboon, S.;Sutayatram, S.;Chanpongsang, S.;Chaiyabutr, N.;Katoh, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제33권6호
    • /
    • pp.921-929
    • /
    • 2020
  • Objective: The aim of the present study was to investigate the beneficial effects of dietary supplementation with oil palm frond (leaf) (OPF) with and without oil palm meal (OPM) on nutrient intake and digestibility, ruminal fermentation and growth performance in goats. Methods: Six female crossbred goats were fed for 28 days of 3 diet treatments; 100% para-grass (T1); 50% para-grass + 50% OPF (T2), and 30% para-grass + 50% OPF + 20% OPM (T3). Body weight, rectal temperature, respiratory rate, and urine volume, food intake, dry matter intake and water intake were measured daily. Nutrient digestibility was determined from five consecutive days of last week in each diet. Ruminal fluid, urine and blood were collected at the end for determination of rumen protozoa and volatile fatty acid contents, urinary allantoin excretion, blood cell count and chemistry profiles. Results: Goats fed T2 and T3 showed higher dry matter and nutrients intakes while protein digestibility was suppressed compared with those for T1. Crude fat digestibility declined in T2 but maintained after adding the OPM (T3). High fat intake by giving OPF and OPM corresponded to a higher ruminal acetate/propionate ratio (C2/C3) and serum cholesterol level. An increased urinary allantoin/creatinine ratio was found in T2 and T3 compared with T1, implying an increased number of ruminal microbes. Conclusion: Increased dry matter intake in T2 and T3 suggested that oil palm by-products are partly useful as a replacement for para-grass in goats. Replacement with the by-products increased plasma cholesterol level, which suggested that these products are a useful energy source. Changes in rumen parameters suggested an increased microbial number and activity suitable for acetate production. However, the limited digestibility of protein implies that addition of high protein feeds may be recommended to increase body weight gain of goats.

Influence of Monensin and Virginiamycin on In Vitro Ruminal Fermentation of Ammoniated Rice Straw

  • Kook, K.;Sun, S.S.;Yang, C.J.;Myung, K.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제12권4호
    • /
    • pp.544-547
    • /
    • 1999
  • The object of this study was to determine the influence of monensin and virginiamycin (VM) on in vitro ruminal fermentation of rice straw or ammoniated rice straw. Rumen fluid was collected from 4 wethers fed 200 g of concentrate supplement with 400 g of untreated (U) or ammoniated (A) rice straw once daily for 28 days. Mixed ruminal microorganisms were incubated in anaerobic media that contained 20% (vol/vol) ruminal fluid and 0.3 g of either U or A rice straw. Monensin and/or VM, dissolved in ethanol, were added in centrifuge tubes at final concentrations of 0, 15, 30, 15+15 and 30+30 ppm of culture fluid. The addition of monensin and VM combination to A rice straw fermentation decreased (p<0.05) the acetate to propionate ratio, total VFA and lactate production, but increased (p<0.05) pH. Total gas production tended to be decreased by the addition of monensin plus VM. Antimicrobial agents decreased $NH_3$ N concentration and dry matter digestibility.

Effects of Physical Form and Urea Treatment of Rice Straw on Rumen Fermentation, Microbial Protein Synthesis and Nutrient Digestibility in Dairy Steers

  • Gunun, P.;Wanapat, M.;Anantasook, N.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권12호
    • /
    • pp.1689-1697
    • /
    • 2013
  • This study was designed to determine the effect of physical form and urea treatment of rice straw on rumen fermentation, microbial protein synthesis and nutrient digestibility. Four rumen-fistulated dairy steers were randomly assigned according to a 2 (2 factorial arrangement in a 4 (4 Latin square design to receive four dietary treatments. Factor A was roughage source: untreated rice straw (RS) and urea-treated (3%) rice straw (UTRS), and factor B was type of physical form of rice straw: long form rice straw (LFR) and chopped (4 cm) rice straw (CHR). The steers were offered the concentrate at 0.5% body weight (BW) /d and rice straw was fed ad libitum. DM intake and nutrient digestibility were increased (p<0.05) by urea treatment. Ruminal pH were decreased (p<0.05) in UTRS fed group, while ruminal ammonia nitrogen ($NH_3$-N) and blood urea nitrogen (BUN) were increased (p<0.01) by urea treatment. Total volatile fatty acid (VFA) concentrations increased (p<0.01) when steers were fed UTRS. Furthermore, VFA concentrations were not altered by treatments (p>0.05), except propionic acid (C3) was increased (p<0.05) in UTRS fed group. Nitrogen (N) balance was affected by urea treatment (p<0.05). Microbial protein synthesis (MCP) synthesis were greater by UTRS and CHR group (p<0.05). The efficiency of microbial N synthesis was greater for UTRS than for RS (p<0.05). From these results, it can be concluded that using the long form combined with urea treatment of rice straw improved feed intake, digestibility, rumen fermentation and efficiency of microbial N synthesis in crossbred dairy steers.

Effects of Dietary Copper on Ruminal Fermentation, Nutrient Digestibility and Fibre Characteristics in Cashmere Goats

  • Zhang, Wei;Wang, Runlian;Zhu, Xiaoping;Kleemann, David O;Yue, Chungwang;Jia, Zhihai
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권12호
    • /
    • pp.1843-1848
    • /
    • 2007
  • Thirty-six 1.5 year-old Inner Mongolian White Cashmere wether goats (body weight $28.14{\pm}1.33$ kg) were used to determine the effects of dietary copper (Cu) concentration on ruminal fermentation, nutrient digestibility and cashmere fibre characteristics. Wethers were fed a basal diet (containing 7.46 mg Cu/kg DM) that was supplemented with either 0 (control), 10, 20 or 30 mg Cu/kg DM. To ensure full consumption, animals were fed restrictedly with 0.75 kg feed (DM) in two equal allotments per day. The results indicated that: (1) supplemental 10 mg Cu/kg DM in the basal diet significantly (p<0.05) decreased ruminal fluid pH value and total VFA concentrations were significantly (p<0.05) increased on all Cu treatment groups. (2) Cu supplementation had no influence on DM intake and digestibility of DM, CP and ADF (p>0.05); however, NDF digestibility of groups supplemented with 10 and 20 mg Cu/kg DM were significantly higher than that of the control group (p<0.05). Apparent absorption and retention of copper were decreased with increasing level of supplementation. (3) 20 mg Cu/kg DM treatment significantly (p<0.05) improved cashmere growth rate, but cashmere diameter was not affected by Cu supplementation (p>0.05). In conclusion, supplementation of cashmere goats with Cu at the rate of 10 to 20 mg/kg DM in the basal diet resulted in some changed rumen fermentation and was beneficial for NDF digestibility, while supplementation of 20 mg Cu/kg DM improved cashmere growth. Collectively, the optimal supplemental Cu level for cashmere goats during the fibre growing period was 20 mg/kg DM (a total dietary Cu level of 27.46 mg/kg DM).