• Title/Summary/Keyword: ruminal fermentation

Search Result 372, Processing Time 0.029 seconds

Near Infrared Spectroscopy for Measuring Purine Derivatives in Urine and Estimation of Microbial Protein Synthesis in the Rumen for Sheep

  • Atanassova, Stefka;Iancheva, Nana;Tsenkova, Roumiana
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1273-1273
    • /
    • 2001
  • The efficiency of the luminal fermentation process influences overall efficiency of luminal production, animal health and reproduction. Ruminant production systems have a significant impact on the global environment, as well. Animal wastes contribute to pollution of the environment as ammonia volatilized to the air and nitrate leached to ground water. Microbial protein synthesis in the rumen satisfies a large proportion of the protein requirements of animals. Quantifying the microbial synthesis is possible by using markers for lumen bacteria and protozoa such as nucleic acids, purine bases, some specific amino acids, or by isotopic $^{15}N,^{32}P,\;and\;^{35}S$ labelled feeds. All those methods require cannulated animals, they are time-consuming and some methods are very expensive as well. Many attempts have been made to find an alternative method for indirect measurement of microbial synthesis in intact animals. The present investigations aimed to assess possibilities of NIRS for prediction of purine nitrogen excretion and ruminal microbial nitrogen synthesis by NIR spectra of urine. Urine samples were collected from 12 growing sheep,6 of them male, and 6- female. The sheep were included in feeding experiment. The ration consisted of sorghum silage and protein supplements -70:30 on dry matter basis. The protein supplements were chosen to differ in protein degradability. The urine samples were collected daily in a vessel containing $60m{\ell}$ 10% sulphuric acid to reduce pH below 3 and diluted with tap water to 4 liters. Samples were stored in plastic bottles and frozen at $-20^{\circ}C$ until chemical and NIRS analysis. The urine samples were analyzed for purine derivates - allantoin, uric acid, xantine and hypoxantine content. Microbial nitrogen synthesis in the lumen was calculated according to Chen and Gomes, 1995. Transmittance urine spectra with sample thickness 1mm were obtained by NIR System 6500 spectrophotometer in the spectral range 1100-2500nm. The calibration was performed using ISI software and PLS regression, respectively. The following statistical results of NIRS calibration for prediction of purine derivatives and microbial protein synthesis were obtained.(Table Omitted). The result of estimation of purine nitrogen excretion and microbial protein synthesis by NIR spectra of urine showed accuracy, adequate for rapid evaluation of microbial protein synthesis for a large number of animals and different diets. The results indicate that the advantages of the NIRS technology can be extended into animal physiological studies. The fast and low cost NIRS analyses could be used with no significant loss of accuracy when microbial protein synthesis in the lumen and the microbial protein flow in the duodenum are to be assessed by NIRS.

  • PDF

Direct-fed Microbials for Ruminant Animals

  • Seo, Ja-Kyeom;Kim, Seon-Woo;Kim, Myung-Hoo;Upadhaya, Santi D.;Kam, Dong-Keun;Ha, Jong-K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.12
    • /
    • pp.1657-1667
    • /
    • 2010
  • Direct-fed microbials (DFM) are dietary supplements that inhibit gastrointestinal infection and provide optimally regulated microbial environments in the digestive tract. As the use of antibiotics in ruminant feeds has been banned, DFM have been emphasized as antimicrobial replacements. Microorganisms that are used in DFM for ruminants may be classified as lactic acid producing bacteria (LAB), lactic acid utilizing bacteria (LUB), or other microorganisms including species of Lactobacillus, Bifidobacterium, Enterococcus, Streptococcus, Bacillus and Propionibacterium, strains of Megasphaera elsdenii and Prevotella bryantii and yeast products containing Saccharomyces and Aspergillus. LAB may have beneficial effects in the intestinal tract and rumen. Both LAB and LUB potentially moderate rumen conditions and improve feed efficiency. Yeast DFM may reduce harmful oxygen, prevent excess lactate production, increase feed digestibility, and improve fermentation in the rumen. DFM may also compete with and inhibit the growth of pathogens, stimulate immune function, and modulate microbial balance in the gastrointestinal tract. LAB may regulate the incidence of diarrhea, and improve weight gain and feed efficiency. LUB improved weight gain in calves. DFM has been reported to improve dry matter intake, milk yield, fat corrected milk yield and milk fat content in mature animals. However, contradictory reports about the effects of DFM, dosages, feeding times and frequencies, strains of DFM, and effects on different animal conditions are available. Cultivation and preparation of ready-to-use strict anaerobes as DFM may be cost-prohibitive, and dosing methods, such as drenching, that are required for anaerobic DFM are unlikely to be acceptable as general on-farm practice. Aero-tolerant rumen microorganisms are limited to only few species, although the potential isolation and utilization of aero-tolerant ruminal strains as DFM has been reported. Spore forming bacteria are characterized by convenience of preparation and effectiveness of DFM delivery to target organs and therefore have been proposed as DFM strains. Recent studies have supported the positive effects of DFM on ruminant performance.

Characteristics of Wet and Dried Distillers Grains on In vitro Ruminal Fermentation and Effects of Dietary Wet Distillers Grains on Performance of Hanwoo Steers

  • Kim, Ill Young;Ahn, Gyu Chul;Kwak, Hyung Jun;Lee, Yoo Kyung;Oh, Young Kyoon;Lee, Sang Suk;Kim, Jeong Hoon;Park, Keun Kyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.5
    • /
    • pp.632-638
    • /
    • 2015
  • Two experiments were conducted to evaluate the nutrient composition, in vitro dry matter disappearance (IVDMD) and organic matter disappearance (IVOMD) of three kinds of distillers grains (DG); i) wet distillers grains (WDG, KRW 25/kg), ii) dried distillers grains (DDG, KRW 280/kg), iii) dried distillers grains with solubles (DDGS, KRW 270/kg) produced from tapioca 70% and rice 30%, and to evaluate dietary effects of WDG on the performance of Hanwoo steers. In Exp. 1, twelve-WDG, four-DDG and one-DDGS were collected from seven ethanol plants. Average crude protein, crude fiber, neutral detergent fiber, and acid detergent fiber of WDG, DDG, and DDGS were: 32.6%, 17.8%, 57.5%, and 30.2% for WDG, 36.7%, 13.9%, 51.4%, and 30.5% for DDG, and 31.0%, 11.9%, 40.3%, and 21.2% for DDGS (DM basis), respectively. The DDGS had a higher quantity of water-soluble fraction than WDG and DDG and showed the highest IVDMD (p<0.05) in comparison to others during the whole experimental time. The IVDMD at 0 to 12 h incubation were higher (p<0.05) in DDG than WDG, but did not show significant differences from 24 to 72 h. The same tendency was observed in IVOMD, showing that DG made from tapioca and rice (7:3) can be used as a feed ingredient for ruminants. Considering the price, WDG is a more useful feed ingredient than DDG and DDGS. In Exp. 2, 36 Hanwoo steers of 21 months ($495.1{\pm}91kg$) were randomly assigned to one of three dietary treatments for 85 days; i) Control (total mixed ration, TMR), ii) WDG 10% (TMR containing 10% of WDG, as fed basis), and iii) WDG 20% (TMR containing 20% of WDG, as fed basis). With respect to body weight and average daily gain, there were no differences between control and WDG treatments during the whole experimental period. Dry matter intake of control (9.34 kg), WDG 10% (9.21 kg) and 20% (8.86 kg) and feed conversion ratio of control (13.0), WDG 10% (13.2) and 20% (12.1) did not show differences between control and WDG treatments. Thus, the use of WDG up to 20% in TMR did not show any negative effect on the performance of Hanwoo steers.

Effects of Methylcellulose on Fibrolytic Bacterial Detachment and In vitro Degradation of Rice Straw

  • Kim, Min Ji;Sung, Ha Guyn;Upadhaya, Santi Devi;Ha, Jong K.;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.10
    • /
    • pp.1459-1465
    • /
    • 2013
  • Two in vitro experiments were conducted to evaluate the effect of methylcellulose (MC) on i) bacterial detachment from rice straw as well as ii) inhibition of bacterial attachment and fiber digestibility. To evaluate the effect of MC on fibrolytic bacterial detachment (Exp 1), in vitro bacterial cultures with 0.1% (w/v) MC solution were compared with cultures without MC after 8 h incubation. The effect of MC on inhibition of bacterial attachment was determined by comparing with real-time PCR the populations of F. succinogenes, R. flavefaciens and R. albus established on rice straw pre-treated with 0.1% MC with those on untreated straw after incubation for 0, 6 and 12 h (Exp 2). The major fibrolytic bacterial attachment on rice straw showed significantly lower populations with either the addition of MC to the culture or pre-treated rice straw compared to controls (p<0.05). Also, the digestibility of rice straw with MC was significantly lower compared with control (p<0.05). The F. succinogenes population did not show detachment from rice straw, but showed an inhibition of attachment and proliferation on rice straw in accordance with a decrease of fiber digestion. The detachments of Ruminococcus species co-existed preventing the proliferations with subsequent reduction of fiber degradation by MC during the incubation. Their detachments were induced from stable colonization as well as the initial adhesion on rice straw by MC in in vitro ruminal fermentation. Furthermore, the detachment of R. albus was more sensitive to MC than was R. flavefaciens. These results showed the certain evidence that attachment of major fibrolytic bacteria had an effect on fiber digestion in the rumen, and each of fibrolytic bacteria, F. succinogenes, R. flavefaciens and R. albus had a specific mechanism of attachment and detachment to fiber.

Influence of dietary organic trace minerals on enteric methane emissions and rumen microbiota of heat-stressed dairy steers

  • A-Rang Son;Mahfuzul Islam;Seon-Ho Kim;Sung-Sill Lee;Sang-Suk Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.132-148
    • /
    • 2023
  • Ruminants are the main contributors to methane (CH4), a greenhouse gas emitted by livestock, which leads to global warming. In addition, animals experience heat stress (HS) when exposed to high ambient temperatures. Organic trace minerals are commonly used to prevent the adverse effects of HS in ruminants; however, little is known about the role of these minerals in reducing enteric methane emissions. Hence, this study aimed to investigate the influence of dietary organic trace minerals on rumen fermentation characteristics, enteric methane emissions, and the composition of rumen bacteria and methanogens in heat-stressed dairy steers. Holstein (n=3) and Jersey (n=3) steers were kept separately within a 3×3 Latin square design, and the animals were exposed to HS conditions (Temperature-Humidity Index [THI], 82.79 ± 1.10). For each experiment, the treatments included a Control (Con) consisting of only basal total mixed rations (TMR), National Research Council (NRC) recommended mineral supplementation group (NM; TMR + [Se 0.1 ppm + Zn 30 ppm + Cu 10 ppm]/kg dry matter), and higher concentration of mineral supplementation group (HM; basal TMR + [Se 3.5 ppm + Zn 350 ppm + Cu 28 ppm]/kg dry matter). Higher concentrations of trace mineral supplementation had no influence on methane emissions and rumen bacterial and methanogen communities regardless of breed (p > 0.05). Holstein steers had higher ruminal pH and lower total volatile fatty acid (VFA) concentrations than Jersey steers (p < 0.05). Methane production (g/d) and yield (g/kg dry matter intake) were higher in Jersey steers than in Holstein steers (p < 0.05). The relative abundances of Methanosarcina and Methanobrevibacter olleyae were significantly higher in Holstein steers than in Jersey steers (p < 0.05). Overall, dietary organic trace minerals have no influence on enteric methane emissions in heat-stressed dairy steers; however, breed can influence it through selective alteration of the rumen methanogen community.

Effects of TDN/CP Ratio on Nutrient Intake, Digestibility, Ruminal Fermentation and Blood Characteristics of Replacement Dairy Heifers (TDN/CP 비율에 의한 영양소 공급이 젖소 육성우의 영양소 섭취량, 소화율, 반추위 발효 및 혈액특성에 미치는 영향)

  • Kim, Gyeom-Heon;Kim, Hyun-Jin;Hwang, Won-Uk;Kim, Soo-Ki
    • Journal of agriculture & life science
    • /
    • v.50 no.5
    • /
    • pp.153-162
    • /
    • 2016
  • This study was conducted to investigate a proper management and nutrient supply for raising replacement heifers to improve lactating performance. In order to determine a proper TDN/CP ratio that would be suitable for domestic use, 13-month-old replacement heifers were fed in the ratios of 4.6:1(T1) and 4.3:1(T2), respectively, to examine the changes in nutritional intake, digestibility, characteristics of rumen fluid and blood compositions. While dry matter intake was same at 9.0kg/day, CP intake did not show any significant difference, though T2(1.45kg/day) was slightly higher than T1(1.34kg/day). In fiber intake and digestibility, two results showed no significant difference, though T1 was slightly higher than T2. The pH, NH3-N and VFA densities in rumen fluid examined at the fourth hour after feed intake did not show any significant difference either. Overall level of VFA was not influenced largely by the TDN/CP ratio, but the iso-butyrate and iso-valerate levels and the A/P ratio were significantly high in T1(p<0.05). In blood characteristics, the treatments showed no significant difference. In conclusion, the TDN/CP ratios of 4.3:1 and 4.6:1 did not significantly affect the characteristics of the ruminant stomach, but in comparison with digestibility of 13-month-old heifers, the ratio of 4.6:1 was more appropriate for increased intake of fiber and higher digestibility.

Effects of Detoxified Sulfur as a Feed Supplement on in Vitro Rumen Fermentation and Methane Mitigation (제독 유황의 반추위 발효성상 및 메탄 저감 효과 연구)

  • Kim, Seon-Ho;Islam, Mahfuzul;Biswas, Ashraf Ali;Cho, Kwang-Keun;Lee, Sang-Suk
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.743-748
    • /
    • 2020
  • Sulfate is a reductant that competes for electrons and may lower CH4 production in the rumen. This study was designed to evaluate the beneficial effect of detoxified sulfur powder supplementation on in vitro rumen fermentation and methane mitigation. A ruminally cannulated Holstein Friesian cow was used as a rumen fluid source, and commercial pelleted concentrate was used as a substrate at 1 g dry matter. Treatments included the addition of detoxified sulfur powder at the rate of 0% (Control), 0.2% (T1), 0.4% (T2), 0.6% (T3), 0.8% (T4), and 1.0% (T5) as dry matter (DM) basis. The pH, total gas (TG), methane (CH4) production, DM digestibility, organic matter (OM) digestibility, and volatile fatty acids (VFA) production were analyzed after 12 hr of incubation. The results showed that CH4 production was significantly lowest in T1 (13.78 ml) but highest in the control (20.16 ml). Insignificantly higher total VFA was observed in control and T1 (64.99 and 64.28 mM, respectively) compared to other treatments after 12 hr of incubation. After 12 hr of incubation, the significantly lowest acetate:propionate was observed in T1 (1.90) while the highest was observed in T4 (2.44). However, no significant differences were recorded for pH, TG, DM digestibility, OM digestibility, acetate, propionate, and butyrate between the control and T1. Total number of bacterial DNA copies was significantly lower in the treatment group than the control. Therefore, it can be concluded from this study that detoxified sulfur at 0.2% inclusion level is optimal for production performance and ruminal CH4 mitigation.

Effect of Corn Silage and Soybean Silage Mixture on Rumen Fermentation Characteristics In Vitro, and Growth Performance and Meat Grade of Hanwoo Steers (옥수수 사일리지와 대두 사일리지의 혼합급여가 In Vitro 반추위 발효성상 및 거세한우의 성장과 육질등급에 미치는 영향)

  • Kang, Juhui;Lee, Kihwan;Marbun, Tabita Dameria;Song, Jaeyong;Kwon, Chan Ho;Yoon, Duhak;Seo, Jin-Dong;Jo, Young Min;Kim, Jin Yeoul;Kim, Eun Joong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.61-72
    • /
    • 2022
  • The present study was conducted to examine the effect of soybean silage as a crude protein supplement for corn silage in the diet of Hanwoo steers. The first experiment was conducted to evaluate the effect of replacing corn silage with soybean silage at different levels on rumen fermentation characteristics in vitro. Commercially-purchased corn silage was replaced with 0, 4, 8, or 12% of soybean silage. Half gram of the substrate was added to 50 mL of buffer and rumen fluid from Hanwoo cows, and then incubated at 39℃ for 0, 3, 6, 12, 24, and 48 h. At 24 h, the pH of the control (corn silage only) was lower (p<0.05) than that of soybean-supplemented silages, and the pH numerically increased along with increasing proportions of soybean silage. Other rumen parameters, including gas production, ammonia nitrogen, and total volatile fatty acids, were variable. However, they tended to increase with increasing proportions of soybean silage. In the second experiment, 60 Hanwoo steers were allocated to one of three dietary treatments, namely, CON (concentrate with Italian ryegrass), CS (concentrate with corn silage), CS4% (concentrate with corn silage and 4% of soybean silage). Animals were offered experimental diets for 110 days during the growing period and then finished with typified beef diets that were commercially available to evaluate the effect of soybean silage on animal performance and meat quality. With the soybean silage, the weight gain and feed efficiency of the animal were more significant than those of the other treatments during the growing period (p<0.05). However, the dietary treatments had little effect on meat quality except for meat color. In conclusion, corn silage mixed with soybean silage even at a lower level provided a greater ruminal environment and animal performances, particularly with increased carcass weight and feed efficiency during growing period.

Effects of Dietary Replacement of Rice Straw with Fermented Spent Mushroom (Flammuliua velutipes) Compost on Availability of Feeds in Sheep, and Growth Performance of Hanwoo Steers (발효 팽이버섯폐배지의 볏짚 대체 급여가 사료의 면양 체내 이용성 및 거세한우의 성장에 미치는 효과)

  • Shinekhuu, Jugdder;Ji, Byung-Ju;Jin, Guang-Lin;Choi, Seong-Ho;Song, Man-Kang
    • Journal of Animal Science and Technology
    • /
    • v.51 no.3
    • /
    • pp.241-248
    • /
    • 2009
  • Metabolic trial with 3 fistulated sheep was conducted in a 3 $\times$ 3 Latin square design and feeding trial with 24 Hanwoo steers in 12 month of age for 20 months was conducted to investigate the replacing effect of rice straw with fermented spent mushroom (Flammuliua velutipes) compost (FSMC) on fermentation characteristics, ruminal effective degradabilty and whole tract digestibility of nutrients in sheep, and to examine the growth performance of Hanwoo steers. Experimental diets for the metabolic trial with sheep were commercial concentrates and rice straw in the ratio of 70 : 30 (CON, DM basis). Same concentrate with 30% FSMC and 70% rice straw (FSMC-30) and 60% FSMC and 40% rice straw(FSMC-60). Diets for Hanwoo steers in three treatments were same as for metabolic trial in replacing ratio of rice straw with FSMC. pH of rumen fluid in sheep was not affected by FSMC. Ammonia-N content in the rumen fluid was highest in the sheep fed FSMC-60 at 3h (P<0.045). The CON diet increased (P<0.001) acetate proportion at 1h and 3h post feeding compared to FSMC-60 diet while propionate proportion was highest in the sheep fed FSMC-60 diet for all the sampling times (P<0.027~P<0.002). Increased proportion of butyrate was observed at 30 min prior to feeding (P<0.031), and 1h (P<0.011) and 6h(P<0.039) post feeding from sheep fed FSMC-30 diet compared to those from sheep fed other diets. Effective degradability in the rumen was not influenced by experimental diets. Whole tract digestibility of crude protein (P<0.031) and neutral detergent fiber (P<0.006) tended to be increased in the sheep fed CON diet while corresponding values were lowest in the sheep fed FSMC-60 diet. Total body weight gain of Hanwoo steers for 8 months was not different among diets, thus daily body gain was not influenced by the experimental diets.

The Effects of Processing Methods of Corn on In sacco Starch and Protein Degradability in the Rumen (옥수수 가공방법이 In sacco 전분 및 단백질 분해율에 미치는 영향)

  • Son, K.N.;Kim, Y.K.;Lee, S.K.;Kim, H.S.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.421-432
    • /
    • 2003
  • The objective of this study was to examine the effects of processing methods of corn grains on protein and starch degradability in the rumen by three ruminally cannulated dry Holstein cows. The corns for these experiments were untreated; whole corn L(density; 660 g/$\ell$), whole corn H(density; 740 g/$\ell$), and treated by four different types: Ground corn, 3.8 mm, 2.8 mm, and 1.5 mm flaked corn. The results obtained were summarized as follows: For 48 hrs, the protein degradabilities were high in order, ground corn, 1.5 mm, 2.8 mm, and 3.8 mm flaked corn(82.6, 76.5, 64.5, and 33.9%, respectively). Flaked corn grains were degraded lower than ground corn. However, as increasing the processing degree of flaking, the protein degradabilities, from 4 hrs to 48 hrs, were increased. The starch degradabilities on 48 hrs were higher in 1.5 and 2.8 mm flaked corns, ground corn, 3.8 mm flaked corn(99.1, 91.5, 89.5, and 68.9%, respectively) than whole corn L(32.0%) and whole corn H(20.5%)(P<0.05). By increasing the processing degree of flaking, the protein degradabilty between 2.8 mm and 3.8 mm was increased significantly from 68.9% to 91.5%, however, that of 1.5 mm flaked corn, processed thinner, tended to be increased slightly, but was not significantly different. From 12 hrs to 24 hrs, whole corn L was degraded little more than whole corn H in starch, was not significantly different. However, after 48 hr incubation in the rumen, whole corn L was degraded more 50% than whole corn H(P<0.05). The value of degradation parameter “a” of protein was lower in all flaked corns than in ground corn. In contrast, the value of degradation parameter “a” of starch was significantly higher in all flaked corns than in ground corn(P<0.05). It seemed that by flaking the corn grains, starch particles were gelatinized, and then, starch was degraded more rapidly, while protein was degraded more slowly. Referring to these kinds of physical characteristics of grain sources in ruminal degradabilities, it is possible to synchronize the fermentation of nitrogen and carbohydrate sources, in formulating the cattle diets.