• Title/Summary/Keyword: ruminal fermentation

Search Result 375, Processing Time 0.051 seconds

Manipulation of Rumen Fermentation by Yeast: The Effects of Dried Beer Yeast on the In vitro Degradability of Forages and Methane Production

  • Ando, S.;Khan, R.I.;Takahasi, J.;Gamo, Y.;Morikawa, R.;Nishiguchi, Y.;Hayasaka, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.1
    • /
    • pp.68-72
    • /
    • 2004
  • The effects of the addition of yeast on in vitro roughage degradability and methane production were investigated in order to clarify the effects of yeast on the rumen microbes and to establish methods of rumen manipulation. Three roughages (whole crop corn, rice straw and Italian ryegrass) were incubated for 3, 6, 12 and 24 h with or without dried beer yeast following the method described by Tilley and Terry. Using the same method, these roughages were incubated with or without yeast extract, albumin or purified DNA. In vitro methane production was measured with or without dried beer yeast at 12 and 24 h. The degradability of yeast was found to be 57 and 80% at 12 and 24 h, respectively. The rate of degradation of fraction b was 6.16%/h. There was a significant increase in roughage degradability at 6 h (p<0.05), 12 h (p<0.05) and 24 h (p<0.01) by dried yeast addition. The degradability of all three roughages was higher in the samples treated with yeast extract than in the no addition samples except in the case of rice straw incubated for 12 h. Nevertheless, the magnitude of increment was smaller with the addition of yeast extract than without the addition of yeast. With the addition of purified DNA, there were significant increases in roughage degradability at 6 h (p<0.01), 12 h (p<0.01) and 24 h (p<0.05); however, higher degradability values were detected in the samples to which albumin was added, particularly at 6 h. If the degradability values of the no addition samples with those of samples containing yeast, yeast extract, DNA and albumin were compared, the largest difference was found in the samples to which yeast was added, although it is worth noting that higher values were observed in the yeast extract samples than in the DNA or albumin samples, with the exception of the case of rice straw incubated for 24 h. Methane production was significantly increased at both 12 and 24 h incubation. The increment of roughage degradation and methane production brought about by the addition of dried beer yeast to the samples was thought to be due to the activation of rumen microbes. Water soluble fraction of yeast also seemed to play a role in ruminal microbe activation. The increment of degradability is thought to be partially due to the addition of crude protein or nucleic acid but it is expected that other factors play a greater role. And those factors may responsible for the different effects of individual yeast on ruminal microbes.

Addition Effect of Seed-associated or Free Linseed Oil on the Formation of cis-9, trans-11 Conjugated Linoleic Acid and Octadecenoic Acid by Ruminal Bacteria In Vitro

  • Wang, J.H.;Song, M.K.;Son, Y.S.;Chang, M.B.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.8
    • /
    • pp.1115-1120
    • /
    • 2002
  • The effects of seed-associated or free linseed oil on fermentation characteristics and long-chain unsaturated fatty acids composition, especially the formation of conjugated linoleic acid (CLA) and octadecenoic acid (trans-11 $C_{18:1}$, $t-C_{18:1}$) by mixed ruminal bacteria were examined in vitro. Concentrate (1% of culture solution, w/v, as-fed basis) with ground linseed (0.6% of culture solution, w/v, DM basis) or linseed oil as absorbed onto ground alfalfa hay was added to 600 ml mixed solution consisting of strained rumen fluid and artificial saliva at the ratio of 1:1 in a glass culture jar. The culture jar was covered with a glass lid with stirrer, and placed into a water-bath ($39^{\circ}C$) and incubated anaerobically up to 24 h. Seed-associated or free linseed oil did not significantly affect the pH and ammonia concentration in the culture solution. Molar percent of acetate tended to increase while that of propionate decreased with the addition of free oil treatment throughout the incubation. Differences in bacterial number were relatively small, regardless of the form of supplements. Decreasing trends in the compositions of linoleic acid ($C_{18:2}$) and linolenic acid ($C_{18:3}$) but increasing trends of stearic acid ($C_{18:0}$), $t-C_{18:1}$ and CLA compositions were found from culture contents up to 12h incubation when incubated with both ground linseed and linseed oil. The compositions of $C_{18:0}$, $C_{18:2}$ and $C_{18:3}$ were greater but those of oleic acid ($C_{18:1}$), $t-C_{18:1}$ and CLA were smaller in a culture solution containing ground linseed than those containing linseed oil. The ratio of $t-C_{18:1}$ to CLA was lower in the culture solutions containing linseed oil up to 12h incubations as compared to those containing ground linseed.

Performance and Metabolism of Calves Fed Starter Feed Containing Sugarcane Molasses or Glucose Syrup as a Replacement for Corn

  • Oltramari, C.E.;Napoles, G.G.O.;De Paula, M.R.;Silva, J.T.;Gallo, M.P.C.;Pasetti, M.H.O.;Bittar, C.M.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.7
    • /
    • pp.971-978
    • /
    • 2016
  • The aim of this study was to evaluate the effect of replacing corn grain for sugar cane molasses (MO) or glucose syrup (GS) in the starter concentrate on performance and metabolism of dairy calves. Thirty-six individually housed Holstein male calves were blocked according to weight and date of birth and assigned to one of the starter feed treatments, during an 8 week study: i) starter containing 65% corn with no MO or GS (0MO); ii) starter containing 60% corn and 5% MO (5MO); iii) starter containing 55% corn and 10% MO (10MO); and iv) starter containing 60% corn and 5% GS (5GS). Animals received 4 L of milk replacer daily (20 crude protein, 16 ether extract, 12.5% solids), divided in two meals (0700 and 1700 h). Starter and water were provided ad libitum. Starter intake and fecal score were monitored daily until animals were eight weeks old. Body weight and measurements (withers height, hip width and heart girth) were measured weekly before the morning feeding. From the second week of age, blood samples were collected weekly, 2 h after the morning feeding, for glucose, ${\beta}$-hydroxybutyrate and lactate determination. Ruminal fluid was collected at 4, 6, and 8 weeks of age using an oro-ruminal probe and a suction pump for determination of pH and short-chain fatty acids (SCFA). At the end of the eighth week, animals were harvested to evaluate development of the proximal digestive tract. The composition of the starter did not affect (p>0.05) concentrate intake, weight gain, fecal score, blood parameters, and rumen development. However, treatment 5MO showed higher (p<0.05) total concentration of SCFAs, acetate and propionate than 0MO, and these treatments did not differ from 10MO and 5GS (p>0.05). Thus, it can be concluded that the replacement of corn by 5% or 10% sugar cane molasses or 5% GS on starter concentrate did not impact performance, however it has some positive effects on rumen fermentation which may be beneficial for calves with a developing rumen.

Effect of Herbal Extracts on the Ruminal Dry Matter Digestibility, Volatile Fatty Acid Production and Growth Rate of Microbes in Vitro (한약재 추출물이 반추위 in vitro 건물소화율, 휘발성 지방산 생성 및 미생물 성장률에 미치는 영향)

  • Moon, Yea-Hwang
    • Journal of agriculture & life science
    • /
    • v.43 no.6
    • /
    • pp.67-75
    • /
    • 2009
  • This study was conducted to investigate the effect of herbal (Obtusifolia, Cinnamon, Chinese pepper, Licorice) extracts on the rumen fermentation in vitro. Comparing to the control, in vitro dry matter digestibility was significantly (P<0.05) decreased at zero hour in the Cinnamon and the Chinese pepper, and at three hour after supplementation in the Licorice. The ratio of volatile fatty acids were significant (P<0.05) differences at 3 hour after fermentation only, acetic acid was higher (P<0.05) in the control compare to the herbal extract treatments, but the ratios of butyrate, iso-butyrate, iso-valerate and valerate were lowest in the control. The growth rate of rumen microbes in vitro was significantly (P<0.05) higer in the herbal extract treatments excluding the Obtusifolia than the control during three hour fermentation, but was not significant difference among treatments in the other fermentation times. From above results, even though the extracts of Cinnamon, Chinese pepper and Licorice inclined to inhibit the activity of rumen microbes during early fermentation period, but did not affect on the growth rate of rumen microbes in vitro.

Effects of Fermented Products by Formitella fraxinea and Sarcodon aspratus on In Vitro Ruminal Fermentation (In vitro 반추위 발효에 미치는 Formitella fraxinea와 Sarcodon aspratus 발효물질의 영향)

  • Kim, Yong-Kook
    • Korean Journal of Agricultural Science
    • /
    • v.31 no.1
    • /
    • pp.15-25
    • /
    • 2004
  • In order to determine the effect of fermentation by the mycelia of fungal species, Formitella fraxinea and Sarcodon aspratus, on the in vitro dry matter digestibility and pH of mixtures with sawdust plus 20% wheat bran w/w, on dry matter basis to use as a feedstuff or an additive including fungal mycelium into a feedstuff. The mixtures were unfermented (UF) and fermented by Formitella fraxinea(FF) and Sarcodon aspratus(SA) for two weeks at $29^{\circ}C$ in a incubator. Fungal fermentation products were added to the basal diet to the level of 0, 1, 3 and 5%, w/w of diets each. The in vitro dry matter digestibilities, soluble sugar contents and pH of fermentation fluids were measured at 24, 48 and 72hr after fermentation begin. Neutral detergent fiber(NDF) contents in mixtures were lower for SA and UF(80.4 and 82.2%) than for FF(88.3%) (P<0.05). In vitro DM digestibility for 48h was higer for SA(21.2%) than for UF and FF(17.9 and 12.2%). The in vitro dry matter digestibility for 24hr was higher for diets added with FF 1% as 49.18%, and lower for diet added with FF 5%(43.07%) than basal diet(44.98%)(P<0.05), and tended to be higher for the diets added with fungal products. The pH of in vitro fermentation fluids for 24 and 48 hrs fermentation were lower for diets added with all FF and SA than for UF(P<0.05). However, those for 72 hrs fermentation were higher for SA 1%(6.74) than other diets(P<0.05). The soluble sugar concentration of in vitro fermentation fluid was not different between diets for 24 hr fermentation. However, those were higher for all additive diets than basal diet for 48 and 72 hrs fermentation(P<0.05). It could be concluded that dairy cow's diets added with fungal fermentation products have positive effects, and expected it will be more beneficial if more fungal mycelium was contained.

  • PDF

Effects of Total Mixed Rations on Ruminal Characteristics, Digestibility and Beef Production of Hanwoo Steers (섬유질배합사료 급여가 비육후기 거세한우의 반추위 발효성상, 소화율 및 산육성에 미치는 영향)

  • Kim, K.H.;Kim, K.S.;Lee, S.C.;Oh, Y.G.;Chung, C.S.;Kim, K.J.
    • Journal of Animal Science and Technology
    • /
    • v.45 no.3
    • /
    • pp.387-396
    • /
    • 2003
  • This experiment was carried out to compare the effects of feeding commercial formula feed and rice straw separately (control) versus a total mixed ration (TMR) on productivity of Hanwoo steers in late stage of fattening and on ruminal fermentation characteristics and digestibilities. Ruminal digesta from the cannulated cattle were sampled at 0, 1, 2, 3, 5, 8 hour after feeding. The steers fed TMR consumed 7.4kg per day and there was no difference between feeding systems. Daily weight gain was not significantly (P>0.05) between feeding systems, however, TMR group showed lower daily gain than control group. The amount of feed consumption per kg weight gain was higher in TMR group than control group (10.5kg and 9.7kg, respectively), resulting in a greater efficiency of feed utilization for gain. In the result of appearance rates of quality grade A were 33% higher for TMR group than those in control group. Appearance rates of grade 1 showed 56% and 75% when fed the control and TMR, respectively. Digestibilities of dry matter, crude protein, crude fiber and gross energy for TMR treatment were significantly higher (P<0.01) than those of control. Prior to feeding (0 h) and each subsequent hour, the TMR resulted in higher rumen pH (P<0.05) when compared with control ration. The concentration of NH3-N for TMR treatment maintained at higher level up to 8hr after feeding, especially increased up to 28.2mg/$d\ell$ during 1-2 hour which was two times (P<0.05) more than control. The amount of total VFA showed same trends between feeding systems. However, the ratios of branched chained fatty acid such as iso-butyric acid and iso-valeric acid for TMR treatment were significantly(P<0.01) higher than control for 3-5hr. Results showed that TMR in these trials is effective feeding system for fattening Hanwoo steers in the respect of ruminal characteristics, total tract digestibility and productivities.

Effects of Halogenated Compounds, Organic Acids and Unsaturated Fatty Acids on In vitro Methane Production and Fermentation Characteristics

  • Choi, N.J.;Lee, S.Y.;Sung, H.G.;Lee, S.C.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1255-1259
    • /
    • 2004
  • The objective of this study was to evaluate the effects of halogenated compounds, organic acids, unsaturated fatty acids and their mixtures on in vitro methane production and fermentative characteristics of mixed rumen microorganisms. Agents used in two in vitro experiments were bromoethanesulfonic acid (BES) and pyromellitic diimide (PMDI) as halogenated compound, fumarate and malate as organic acid, and linoleic acid and linolenic acid as unsaturated fatty acid sources. Ruminal fluid collected from a Holstein steer fed tall fescue and concentrate mixtures was incubated at $39^{\circ}C$ for 48 h with addition of those materials. Single supplementation of halogenated compounds, organic acids or unsaturated fatty acids decreased in vitro methane production (p<0.05). The second experiment was designed to investigate effects of combination of one of halogenated compounds and either organic acids or fatty acids on methane production. Lower concentration of methane and lower A:P ratio were observed with PMDI compared with BES (p<0.01). In general medium pH, VFA, total gas and hydrogen production, and dry matter degradability were affected by addition of the same compounds. In addition, PMDI+malate treatment resulted in the highest molar proportion of propionate, and lowest A:P ratio and methane production (p<0.01). Hydrogen production was highest in PMDI+linolenic acid and lowest in BES+malate treatment (p<0.01). PMDI+malate combination was the most recommendable in reducing methane production without too much influence on digestibility under conditions of present studies.

Effects of Replacement of Concentrate Mixture by Broccoli Byproducts on Lactating Performance in Dairy Cows

  • Yi, X.W.;Yang, F.;Liu, J.X.;Wang, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.10
    • /
    • pp.1449-1453
    • /
    • 2015
  • The objective of the present study was to determine the effects of feeding pelletized broccoli byproducts (PBB) on milk yield and milk composition in dairy cows. In Trial 1, an in vitro gas test determined the optimal replacement level of PBB in a concentrate mixture in a mixed substrate with Chinese wild ryegrass hay (50:50, w/w) at levels of 0, 10%, 20%, 30%, or 40% (dry matter basis). When the concentrate was replaced by PBB at a level of 20%, no adverse effects were found on the gas volume or its rate constant during ruminal fermentation. In trial 2, 24 lactating cows (days in milk = $170.4{\pm}35$; milk yield = $30{\pm}3kg/d$; body weight = $580{\pm}13kg$) were divided into 12 blocks based on day in milk and milk yield and randomly allocated to two dietary treatments: a basic diet with or without PBB replacing 20% of the concentrate mixture. The feeding trial lasted for 56 days; the first week allowed for adaptation to the diet. The milk composition was analyzed once a week. No significant difference in milk yield was observed between the two groups (23.5 vs 24.2 kg). A significant increase was found in milk fat content in the PBB group (p<0.05). Inclusion of PBB did not affect milk protein, lactose, total solids or solids-not-fat (p>0.05). These results indicated that PBB could be included in dairy cattle diets at a suitable level to replace concentrate mixture without any adverse effects on dairy performance.

Dietary rambutan peel powder as a rumen modifier in beef cattle

  • Ampapon, Thiwakorn;Wanapat, Metha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.763-769
    • /
    • 2020
  • Objective: The experiment was conducted to study the effect of rambutan (Nephelium lappaceum) fruit peel powder (RP) on feed consumption, digestibility of nutrients, ruminal fermentation dynamics and microbial population in Thai breed cattle. Methods: Four, 2-year old (250±15 kg) beef bull crossbreds (75% Brahman×25% local breed) were allotted to experimental treatments using a 4×4 Latin square design. Four dietary supplementation treatments were imposed; non-supplementation (control, T1); supplementation of RP fed at 2% of dry matter intake (DMI) (low, T2); supplementation of RP fed at 4% of DMI (medium, T3) and supplementation of RP fed at 6% of DMI (high, T4). All cattle were given a concentrate supplement at 1% of body weight while Napier grass was provided as a free choice. Results: The findings revealed that RP supplementation did not negatively affect (p>0.05) DMI of Napier grass, while RP intake and total DMI were the greatest in the RP supplementation at 4% and 6% DMI. Nevertheless, the nutrients (dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber) digestibilities were not changed in the RP supplementation groups. Rumen fermentation parameters especially those of total volatile fatty acids, acetate and butyrate were not significantly changed. However, the propionate concentration was remarkably increased (p<0.05) in the RP supplementation. Notably, the ratio of acetate to propionate, the number of protozoa, as well as the methane estimation were significantly reduced in the RP supplemented groups (4% and 6% of DMI), while the counts of bacteria was not altered. Conclusion: Supplementation of RP (4% of DMI) improved rumen propionate production, reduced protozoal population and methane estimation (p<0.05) without a negative effect on feed consumption and nutrients total tract digestibilities in beef cattle. Using dietary rambutan fruit peel powder has potential promise as a rumen regulator.

Effect of Sources and Levels of Carbohydrates on Fermentation Characteristics and Hydrogenation of Linoleic Acid by Rumen Bacteria In Vitro

  • Wang, J.H.;Song, M.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.1
    • /
    • pp.48-53
    • /
    • 2001
  • An in vitro study was conducted to examine the effect of sources and the addition levels of carbohydrates on fermentation characteristics, bacterial growth, and hydrogenation of linoleic acid ($C_{18:2}$) by mixed ruminal bacteria. Starch and cellobiose were added to the 200 ml non-selective basal media at the levels of 0.20 and 0.35% (w/v), respectively. Linoleic acid (66.8~79.6 mg) in the absorbed form into the pieces of nylon cloth was also added to the media of 5 treatments including control which was not added with carbohydrate. Three mls of rumen fluid strained through 12 layers of cheese cloth were added to each medium, and were incubated anaerobically in the shaking incubator of $39^{\circ}C$ for 24 hours. During 24 h incubation the pH in incubation media of all treatments was maintained above 6.6 by the addition of sodium bicarbonate. The pH and ammonia concentration of incubation media were not clearly influenced by the sources and addition levels of carbohydrates while additions of carbohydrates increased (p<0.0001) VFA concentration at the 24 h incubation. Molar proportions of acetate were reduced (p<0.0004) while those of propionate were increased (p<0.0006) by the addition of carbohydrates. But the differences in concentration and molar proportions of the VFA were small between the sources or the addition levels. Bacterial growth was faster (p<0.0004) in the starch added treatments than in the cellobiose added ones and control, but no differences were found between addition levels. Increased (p<0.0487) hydrogenation was observed from the starch added treatments compared to the cellobiose added ones, but there was no difference between addition levels.