• Title/Summary/Keyword: ruminal fermentation

Search Result 374, Processing Time 0.027 seconds

Effects of Cynanchum Wilfordii Extract on In vitro Ruminal Fermentation Characteristics and Methane Production (백하수오 추출물이 In vitro 반추위 발효성상 및 메탄가스 생성에 미치는 영향)

  • Yang, Seung-Hak;Lim, Joung-Soo;Kim, Byul;Hwang, Ok-Hwa;Cho, Sung-Back;Choi, Dong-Yoon;Choi, Seok-Geun;Hwang, Seong-Gu
    • Journal of Animal Environmental Science
    • /
    • v.19 no.2
    • /
    • pp.155-162
    • /
    • 2013
  • The objective of this study is to investigate the effects of Cynanchum wilfordii (CW) on cell viability, anti-oxidant activity, volatile fatty acid (VFA) production and methane gas production. Collected rumen fluid incubated with CW powder (1% w/v) for 12 and 24 hours were analyzed for pH, VFAs and methane. Alamar blue assay showed no significant difference on the viability of 3T3-L1 and C2C12 cells treated with CW for 24 hours. TBARS data showed a dose dependent increase on the antioxidant activity of CW. VFAs increased in the CW-treated groups compared to the control group. In addition, propionate increased more than other VFAs by the treatment with CW. There was a significant decrease in methane gas production in batch culture treated with CW in 12hrs. In conclusion, it was suggested that Cynanchum wilfordii could manipulate rumen fermentation considered by increasing VFA production and inhibition of methanogenesis.

The Effect of Castor Aralia (Kalopanax pictus Nakai) Trunk Extracts on Rumen Fermentation and Methane Reduction In vitro (엄나무 (Kalopanax pictus Nakai) 줄기 추출물이 In vitro 반추위 발효와 메탄저감에 미치는 영향)

  • Kim, Jae Seong;Hwang, Moon Seok;Kim, Yong Chae;Yoon, Young-Man;Bae, Gui Sek;Kim, Chang-Hyun
    • Journal of Animal Environmental Science
    • /
    • v.21 no.3
    • /
    • pp.113-122
    • /
    • 2015
  • An experiment was conducted to examine the effects of Kalopanax pictus Nakai (Kalopanax) on in vitro rumen fermentation and methane (CH4) reduction. Kalopanax trunk was extracted with 70% ethanol and 70% methanol. Rumen fluid, alfalfa hay and buffer (control: C) supplemented with 0.3% Kalopanx juice (T1), 0.3% ethanol extract (T2) and 0.3% methanol extract (T3) in the total volume of culture medium were incubated at $38^{\circ}C$ for 24h and 48h. Rumen pH was lower in all Kalopanax treatments during all incubations than that in control (p<0.05). Total VFA and total gas production in T2 and T3 was significantly higher than that in C at 48h incubation (p<0.05). Ammonia-N was decreased in all treatments compared with C during the incubation periods (p<0.05). At 24h incubation, $CH_4$ contents were significantly reduced by both alcohol extracts. It is concluded that supplementing Kalopanax extracts can stimulate ruminal fermentation of rumen microorganisms and inhibit methanogenesis.

Lactation performance and rumen fermentation in dairy cows fed a diet with alfalfa hay replaced by corn stover and supplemented with molasses

  • Wei, Zi-Hai;Liang, Shu-Lin;Wang, Di-Ming;Liu, Hong-Yun;Wanapat, Metha;Liu, Jian-Xin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1122-1127
    • /
    • 2019
  • Objective: The objective of current study was to investigate the lactation performance and rumen fermentation characteristics of dairy cows fed a diet with alfalfa hay replaced by corn stover but supplemented with molasses. Methods: Sixteen Holstein cows in mid-lactation were randomly assigned to 1 of 2 dietary treatments: i) alfalfa based diet (AH), and ii) corn stover based diet supplemented with molasses (CSM). The experiment was conducted according to a $2{\times}2$ crossover design with 22-d each period, consisting of 17 d for adaptation and 5 d for data and samples collection. Results: Dry matter intake and milk yield were higher for cows fed AH than CSM (p<0.01). Milk protein content and nitrogen conversion were higher (p<0.05), while milk urea nitrogen was lower (p<0.01) for cows fed AH than CSM-fed cows. Contents of milk total solids, fat and lactose were not different between two groups (p>0.10). Total rumen volatile fatty acid concentration tended to be higher (p = 0.06) for cows fed AH than CSM-fed cows. Molar proportion of acetate was lower (p = 0.04), but valerate was higher (p = 0.02) in cows fed AH than CSM-fed cows. Rumen concentration of propionate, and isobutyrate, and ratio of acetate to propionate tended to be different (p<0.10) between two groups. The feed cost per kilogram of milk was lower in CSM than AH (p<0.01). No differences were found in feed efficiency and most plasma parameters tested (p>0.10). Conclusion: In comparison with AH diet, CSM diet could be fed to dairy cows without negative effect on feed efficiency, ruminal fermentation, but economically beneficial, indicating that CSM could be an alternative choice for dairy farms instead of AH to feed midlactation dairy cows.

Effect of bamboo grass (Tiliacora triandra, Diels) pellet supplementation on rumen fermentation characteristics and methane production in Thai native beef cattle

  • Wann, Chinda;Wanapat, Metha;Mapato, Chaowarit;Ampapon, Thiwakorn;Huang, Bi-zhi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.8
    • /
    • pp.1153-1160
    • /
    • 2019
  • Objective: The objective of this study was to investigate the effect of bamboo grass (Tiliacora triandra, Diels) pellet (Bamboo-Cass) supplementation on feed intake, nutrient digestibility, rumen microbial population and methane production in Thai native beef cattle. Methods: Four Thai native beef cattle bulls ($190{\pm}2kg$) were randomly allotted to four respective dietary treatments in a $4{\times}4$ Latin square design. Treatments were the varying levels of Bamboo-Cass supplementation at 0, 50, 100, and 150 g/head/d, respectively. Rice straw was fed ad libitum and the concentrate offered at 0.5% of body weight. Results: Under this experiment, the findings revealed that acetate and butyrate production were decreased (p<0.05), propionate increased (p<0.05), whilst ruminal $NH_3-N$ concentration was decreased (p<0.05) by supplementation of Bamboo-Cass at 150 g/head/d. Moreover, rice straw intake, and microbial population were linearly increased (p<0.05), while methane production was decreased (p<0.05). Conclusion: The results from the present study indicate that supplementation of Bamboo-Cass at 150 g/head/d significantly enhanced feed intake, decreased protozoa and increased bacterial population, rumen fermentation efficiency while decreased methane production. Therefore, Bamboo-Cass as a supplement is promising as a rumen enhancer in beef cattle fed on rice straw.

Effect of Soybean Meal and Soluble Starch on Biogenic Amine Production and Microbial Diversity Using In vitro Rumen Fermentation

  • Jeong, Chang-Dae;Mamuad, Lovelia L.;Kim, Seon-Ho;Choi, Yeon Jae;Soriano, Alvin P.;Cho, Kwang Keun;Jeon, Che-Ok;Lee, Sung Sil;Lee, Sang-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.1
    • /
    • pp.50-57
    • /
    • 2015
  • This study was conducted to investigate the effect of soybean meal (SM) and soluble starch (SS) on biogenic amine production and microbial diversity using in vitro ruminal fermentation. Treatments comprised of incubation of 2 g of mixture (expressed as 10 parts) containing different ratios of SM to SS as: 0:0, 10:0, 7:3, 5:5, 3:7, or 0:10. In vitro ruminal fermentation parameters were determined at 0, 12, 24, and 48 h of incubation while the biogenic amine and microbial diversity were determined at 48 h of incubation. Treatment with highest proportion of SM had higher (p<0.05) gas production than those with higher proportions of SS. Samples with higher proportion of SS resulted in lower pH than those with higher proportion of SM after 48 h of incubation. The largest change in $NH_3$-N concentration from 0 to 48 h was observed on all SM while the smallest was observed on exclusive SS. Similarly, exclusive SS had the lowest $NH_3$-N concentration among all groups after 24 h of incubation. Increasing methane ($CH_4$) concentrations were observed with time, and $CH_4$ concentrations were higher (p<0.05) with greater proportions of SM than SS. Balanced proportion of SM and SS had the highest (p<0.05) total volatile fatty acid (TVFA) while propionate was found highest in higher proportion of SS. Moreover, biogenic amine (BA) was higher (p<0.05) in samples containing greater proportions of SM. Histamines, amine index and total amines were highest in exclusive SM followed in sequence mixtures with increasing proportion of SS (and lowered proportion of SM) at 48 h of incubation. Nine dominant bands were identified by denaturing gradient gel electrophoresis (DGGE) and their identity ranged from 87% to 100% which were mostly isolated from rumen and feces. Bands R2 (uncultured bacterium clone RB-5E1) and R4 (uncultured rumen bacterium clone L7A_C10) bands were found in samples with higher proportions of SM while R3 (uncultured Firmicutes bacterium clone NI_52), R7 (Selenomonas sp. MCB2), R8 (Selenomonas ruminantium gene) and R9 (Selenomonas ruminantium strain LongY6) were found in samples with higher proportions of SS. Different feed ratios affect rumen fermentation in terms of pH, $NH_3$-N, $CH_4$, BA, volatile fatty acid and other metabolite concentrations and microbial diversity. Balanced protein and carbohydrate ratios are needed for rumen fermentation.

Effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro disappearance and gas production for feedlot cattle

  • Tagawa, Shin-ichi;Holtshausen, Lucia;McAllister, Tim A;Yang, Wen Zhu;Beauchemin, Karen Ann
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.4
    • /
    • pp.479-485
    • /
    • 2017
  • Objective: The effects of particle size of processed barley grain, enzyme addition and microwave treatment on in vitro dry matter (DM) disappearance (DMD), gas production and fermentation pH were investigated for feedlot cattle. Methods: Rumen fluid from four fistulated feedlot cattle fed a diet of 860 dry-rolled barley grain, 90 maize silage and 50 supplement g/kg DM was used as inoculum in 3 batch culture in vitro studies. In Experiment 1, dry-rolled barley and barley ground through a 1-, 2-, or 4-mm screen were used to obtain four substrates differing in particle size. In Experiment 2, cellulase enzyme (ENZ) from Acremonium cellulolyticus Y-94 was added to dry-rolled and ground barley (2-mm) at 0, 0.1, 0.5, 1, and 2 mg/g, while Experiment 3 examined the interactions between microwaving (0, 30, and 60 s microwaving) and ENZ addition (0, 1, and 2 mg/g) using dry-rolled barley and 2-mm ground barley. Results: In Experiment 1, decreasing particle size increased DMD and gas production, and decreased fermentation pH (p<0.01). The DMD (g/kg DM) of the dry-rolled barley after 24 h incubation was considerably lower (p<0.05) than that of the ground barley (119.1 dry-rolled barley versus 284.8 for 4-mm, 341.7 for 2-mm; and 358.6 for 1-mm). In Experiment 2, addition of ENZ to dry-rolled barley increased DMD (p<0.01) and tended to increase (p = 0.09) gas production and decreased (p<0.01) fermentation pH, but these variables were not affected by ENZ addition to ground barley. In Experiment 3, there were no interactions between microwaving and ENZ addition after microwaving for any of the variables. Microwaving had minimal effects (except decreased fermentation pH), but consistent with Experiment 2, ENZ addition increased (p<0.01) DMD and gas production, and decreased (p<0.05) fermentation pH of dry-rolled barley, but not ground barley. Conclusion: We conclude that cellulase enzymes can be used to increase the rumen disappearance of barley grain when it is coarsely processed as in the case of dry-rolled barley. However, microwaving of barley grain offered no further improvements in ruminal fermentation of barley grain.

Effects of Dietary Supplementation with Hainanmycin on Protein Degradation and Populations of Ammonia-producing Bacteria In vitro

  • Wang, Z.B.;Xin, H.S.;Wang, M.J.;Li, Z.Y.;Qu, Y.L.;Miao, S.J.;Zhang, Y.G.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.5
    • /
    • pp.668-674
    • /
    • 2013
  • An in vitro fermentation was conducted to determine the effects of hainanmycin on protein degradation and populations of ammonia-producing bacteria. The substrates (DM basis) for in vitro fermentation consisted of alfalfa hay (31.7%), Chinese wild rye grass hay (28.3%), ground corn grain (24.5%), soybean meal (15.5%) with a forage: concentrate of 60:40. Treatments were the control (no additive) and hainanmycin supplemented at 0.1 (H0.1), 1 (H1), 10 (H10), and 100 mg/kg (H100) of the substrates. After 24 h of fermentation, the highest addition level of hainanmycin decreased total VFA concentration and increased the final pH. The high addition level of hainanmycin (H1, H10, and H100) reduced (p<0.05) branched-chain VFA concentration, the molar proportion of acetate and butyrate, and ratio of acetate to propionate; and increased the molar proportion of propionate, except that for H1 the in molar proportion of acetate and isobutyrate was not changed (p>0.05). After 24 h of fermentation, H10 and H100 increased (p<0.05) concentrations of peptide nitrogen and AA nitrogen and proteinase activity, and decreased (p<0.05) $NH_3$-N concentration and deaminase activity compared with control. Peptidase activitives were not affected by hainanmycin. Hainanmycin supplementation only inhibited the growth of Butyrivibrio fibrisolvens, which is one of the species of low deaminative activity. Hainanmycin supplementation also decreased (p<0.05) relative population sizes of hyper-ammonia-producing species, except for H0.1 on Clostridium aminophilum. It was concluded that dietary supplementation with hainanmycin could improve ruminal fermentation and modify protein degradation by changing population size of ammonia-producing bacteria in vitro; and the addition level of 10 mg/kg appeared to achieve the best results.

Anti-inflammatory Effect of Natural Plant Extracts on in vitro Rumen Fermentation and Methane Emission (천연 식물 추출물의 항염 효과가 in vitro 반추위 발효성상과 메탄 생성에 미치는 영향)

  • Lee, Shin Ja;Lee, Su Kyoung;Lim, Jung Hwa;Son, Chang Jun;Lee, Sung Sill
    • Journal of agriculture & life science
    • /
    • v.51 no.4
    • /
    • pp.97-109
    • /
    • 2017
  • This study was conducted to investigate the effects of anti-inflammatory plant extracts on the in vitro rumen fermentation characteristics and methane emission. Anti-inflammatory plant extracts from Morus bombycis Koidz, Mallotus japonicus L., Morus alba L., Paulownia coreana Uyeki, Isodon japonicus Hara and Ginkgo biloba L. were used in the study. The ruminal fluid(5 mL), McDougall buffer(10 mL), timothy as a substrate(0.3 g) and each anti-inflammatory plant extract(5% of substrate) were dispensed anaerobically into 50mL serum bottle. The mixtures were incubated for 3, 9, 12, 24, 48 and 72h at $39^{\circ}C$ without shaking. Supplementation of the anti-inflammatory plant extracts did not effects characteristics(pH, digestibility of dry matter, glucose concentration, ammonia concentration, protein concentration, VFA) on rumen fermentation. Total gas was showed a different pattern depending on treatments. Carbon dioxide was significantly(p<0.05) higher in Morus alba and Isodon japonicus than in control at 48h. Methane was significantly(p<0.05) lower in treatment than in control at initial fermentation. However the more incubation time was increased, the more methane emission was higher in treatment than in control. The concentrations of polyphenol and flavonoid were higher in Ginkgo biloba. In conclusion, supplementation of the anti-inflammatory plant extracts did not effect on rumen fermentation and methane emission was decreased in initial fermentation.

Enhancing Mulberry Leaf Meal with Urea by Pelleting to Improve Rumen Fermentation in Cattle

  • Tan, N.D.;Wanapat, M.;Uriyapongson, S.;Cherdthong, A.;Pilajun, R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.4
    • /
    • pp.452-461
    • /
    • 2012
  • Four, ruminally fistulated crossbred (Brahman${\times}$native) beef cattle with initial body weight of $420{\pm}15kg$ were randomly assigned according to a $4{\times}4$ Latin square design. The dietary treatments were mulberry leaf pellet (MUP) supplementation at 0, 200, 400 and 600 g/hd/d with rice straw fed to allow ad libitum intake. All steers were kept in individual pens and supplemented with concentrate at 5 g/kg of body weight daily. The experiment was 4 periods, and each lasted 21 d. During the first 14 d, all steers were fed their respective diets ad libitum and during the last 7 d, they were moved to metabolism crates for total urine and fecal collection. It was found that increasing MUP levels resulted in linearly increasing rice straw and total intakes (p<0.05). Ruminal temperature and pH were not significantly affected by MUP supplementation while $NH_3$-N concentration was increased (p<0.05) and maintained at a high level (18.5 mg/dl) with supplementation of MUP at 600 g/hd/d. Similarly, viable total bacteria in the rumen and cellulolytic bacteria were enriched by MUP supplementation at 600 g/hd/d. However, the rumen microbial diversity determined with a PCR-DGGE technique showed similar methanogenic diversity between treatments and sampling times and were similar at a 69% genetic relationship as determined by a UPGMA method. Based on this study, it could be concluded that supplementation of MUP at 600 g/hd/d improved DM intake, ruminal $NH_3$-N, and cellulolytic bacteria thus iimproving rumen ecology in beef cattle fed with rice straw.

Effects of Isolated and Commercial Lactic Acid Bacteria on the Silage Quality, Digestibility, Voluntary Intake and Ruminal Fluid Characteristics

  • Ando, Sada;Ishida, M.;Oshio, S.;Tanaka, O.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.386-389
    • /
    • 2006
  • Silage is a major component of cattle rations, so the improvement of silage quality by the inoculation of lactic acid bacteria is of great interest. In this study, commercially distributed Lactobacillus plantram and Lactobacillus rhamnousas NGRI 0110 were used for ensilaging of guinea grass. The four treatments used were a control silage, a silage with cellulase addition, a silage with cellulose+L. plantram addition, and a silage with cellulose + NGRI 0110 addition. Silage quality, voluntary intake, nutrient digestibility, and the characteristics of ruminal fluid of wethers were investigated. Silage to which lactic acid bacteria were added showed low pH and acetic acid concentration and the highest lactic acid content. Dry matter and organic matter digestibility were significantly (p<0.05) increased by cellulase addition and significantly (p<0.05) higher values were observed in L. plantram- and NGRI 0110-added silage. Voluntary intake of NGRI 0110-added silage was the highest and that of control silage was the lowest. We concluded that the observed ability of NGRI 0110 to tolerate low pH and to continue lactic acid fermentation in high lactic acid concentration had also occurred in actual ensilaging. The results indicate that the addition of lactic acid bacteria might improve silage quality and increase digestibility and voluntary intake. The potential for improvement by NGRI 0110 was higher than that to be gained by the use of commercially available lactic acid bacteria.