• Title/Summary/Keyword: rumen fermentation characteristics

Search Result 197, Processing Time 0.026 seconds

Effect of Corn Silage and Soybean Silage Mixture on Rumen Fermentation Characteristics In Vitro, and Growth Performance and Meat Grade of Hanwoo Steers (옥수수 사일리지와 대두 사일리지의 혼합급여가 In Vitro 반추위 발효성상 및 거세한우의 성장과 육질등급에 미치는 영향)

  • Kang, Juhui;Lee, Kihwan;Marbun, Tabita Dameria;Song, Jaeyong;Kwon, Chan Ho;Yoon, Duhak;Seo, Jin-Dong;Jo, Young Min;Kim, Jin Yeoul;Kim, Eun Joong
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.42 no.2
    • /
    • pp.61-72
    • /
    • 2022
  • The present study was conducted to examine the effect of soybean silage as a crude protein supplement for corn silage in the diet of Hanwoo steers. The first experiment was conducted to evaluate the effect of replacing corn silage with soybean silage at different levels on rumen fermentation characteristics in vitro. Commercially-purchased corn silage was replaced with 0, 4, 8, or 12% of soybean silage. Half gram of the substrate was added to 50 mL of buffer and rumen fluid from Hanwoo cows, and then incubated at 39℃ for 0, 3, 6, 12, 24, and 48 h. At 24 h, the pH of the control (corn silage only) was lower (p<0.05) than that of soybean-supplemented silages, and the pH numerically increased along with increasing proportions of soybean silage. Other rumen parameters, including gas production, ammonia nitrogen, and total volatile fatty acids, were variable. However, they tended to increase with increasing proportions of soybean silage. In the second experiment, 60 Hanwoo steers were allocated to one of three dietary treatments, namely, CON (concentrate with Italian ryegrass), CS (concentrate with corn silage), CS4% (concentrate with corn silage and 4% of soybean silage). Animals were offered experimental diets for 110 days during the growing period and then finished with typified beef diets that were commercially available to evaluate the effect of soybean silage on animal performance and meat quality. With the soybean silage, the weight gain and feed efficiency of the animal were more significant than those of the other treatments during the growing period (p<0.05). However, the dietary treatments had little effect on meat quality except for meat color. In conclusion, corn silage mixed with soybean silage even at a lower level provided a greater ruminal environment and animal performances, particularly with increased carcass weight and feed efficiency during growing period.

Effects of Applying Microbial Additive Inoculants to Spent Mushroom Substrate (Flammulina velutipes) on Rumen Fermentation and Total-tract Nutrient Digestibility in Hanwoo Steers (팽이버섯 부산물 발효에 따른 한우 거세우 반추위 성상 및 소화율에 미치는 영향)

  • Baek, Youl-Chang;Jeong, Jin-Young;Oh, Young-Kyoon;Kim, Min-Seok;Lee, Sung-Dae;Lee, Hyun-Jeong;Do, Yoon-Jung;Ahmadi, Farhad;Choi, Hyuck
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.3
    • /
    • pp.569-586
    • /
    • 2017
  • We inoculated a spent mushroom substrate from Flammulina velutipes (SMSF) with a microbial additive and assessed the effects on chemical composition, ruminal fermentation parameters, and total-tract nutrient digestibility. In Exp. 1, three cannulated Hanwoo steers were used in an in situ trial to determine the degradation kinetics of dry matter (DM) and crude protein (CP). In Exp. 2, three Hanwoo steers were randomly assigned to experimental diets according to a $3{\times}3$ Latin square for a 3-week period (2 weeks for adaptation and 1 week for sample collection). Experimental diets included the control diet (3.75 kg/d formulated concentrate mixture + 1.25 kg/d rice straw), SMSF diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d SMSF), and inoculated SMSF (ISMSF) diet (3.19 kg/d formulated concentrate mixture + 1.25 kg/d rice straw + 0.56 kg/d ISMSF). The chemical composition of ISMSF did not differ from that of SMSF. Microbial additive inoculation decreased pH (P<0.05) and improved preservation for SMSF. The percentages of DM, neutral detergent fiber (NDF), and acid detergent fiber (ADF) in ISMSF were slightly lesser than those in SMSF. Ruminal fermentation characteristics and total-tract nutrient digestibility were not affected by diet. Overall, microbial additive inoculation improved preservation for SMSF and may allow improved digestion in the rumen; however, the total digestible nutrients (TDN) of SMSF and ISMSF diets were slightly lesser than the control diet. The ISMSF can be used as an alternative feedstuff to partially replace formulated concentrate feed.

Assessment of cutting time on nutrient values, in vitro fermentation and methane production among three ryegrass cultivars

  • Wang, Chunmei;Hou, Fujiang;Wanapat, Metha;Yan, Tianhai;Kim, Eun Joong;Scollan, Nigel David
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.8
    • /
    • pp.1242-1251
    • /
    • 2020
  • Objective: The 3×3 factorial arrangement was used to investigate if either high water-soluble carbohydrates (WSC) cultivars or suitable time of day that the grass cut could improve nutrient values and in vitro fermentation characteristics. Methods: The 3 cultivars were mowed at 3 diurnal time points and included a benchmark WSC ryegrass cultivar 'Premium', and 2 high WSC cultivars AberAvon and AberMagic, which contained, on average, 157, 173, and 193 g/kg dry matter (DM) of WSC, and 36.0, 36.5, and 34.1 g/kg DM of N during 7th regrowth stage, respectively. The fermentation jars were run at 39℃ with gas production recorded and sampled at 2, 5, 8, 11, 14, 17, 22, 28, 36, and 48 h. The rumen liquid was collected from 3 rumen fistulated cows grazing on ryegrass pasture. Results: High WSC cultivars had significantly greater WSC content, in vitro DM digestibility (IVDMD) and total gas production (TGP), and lower lag time than Premium cultivar. Methane production for AberMagic cultivar containing lower N concentration was marginally lower than that for AberAvon and Premium cultivars. Grass cut at Noon or PM contained greater WSC concentration, IVDMD and TGP, and lower N and neutral detergent fiber (NDF) contents, but CH4 production was also increased, compared to grass cut in AM. Meanwhile, the effects of diurnal cutting time were influenced by cultivars, such as in vitro CH4 production for AberMagic was not affected by cutting time. The IVDMD and gas production per unit of DM incubated were positively related to WSC concentration, WSC/N and WSC/NDF, respectively, and negatively related to N and NDF concentrations. Conclusion: These results imply either grass cut in Noon or PM or high WSC cultivars could improve nutrient values, IVDMD and in vitro TGP, and that AberMagic cultivar has a slightly lower CH4 production compared to AberAvon and Premium. Further study is necessary to determine whether the increase of CH4 production response incurred by shifting from AM cutting to Noon and/or PM cutting could be compensated for by high daily gain from increased WSC concentration and DM digestibility.

Nutritional Characteristics of Forage Grown in South of Benin

  • Musco, Nadia;Koura, Ivan B.;Tudisco, Raffaella;Awadjihe, Ghislain;Adjolohoun, Sebastien;Cutrignelli, Monica I.;Mollica, Maria Pina;Houinato, Marcel;Infascelli, Federico;Calabro, Serena
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.1
    • /
    • pp.51-61
    • /
    • 2016
  • In order to provide recommendations on the most useful forage species to smallholder farmers, eleven grass and eleven legume forages grown in Abomey-Calavi in Republic of Benin were investigated for nutritive value (i.e. chemical composition and energy content) and fermentation characteristics (i.e. gas and volatile fatty acid production, organic matter degradability). The in vitro gas production technique was used, incubating the forages for 120 h under anaerobic condition with buffalo rumen fluid. Compared to legume, tropical grass forages showed lower energy (8.07 vs 10.57 MJ/kg dry matter [DM]) and crude protein level (16.10% vs 19.91% DM) and higher cell wall content (neutral detergent fiber: 63.8% vs 40.45% DM), respectively. In grass forages, the chemical composition showed a quite high crude protein content; the in vitro degradability was slightly lower than the range of tropical pasture. The woody legumes were richer in protein and energy and lower in structural carbohydrates than herbaceous plants, however, their in vitro results are influenced by the presence of complex compounds (i.e. tannins). Significant correlations were found between chemical composition and in vitro fermentation characteristics. The in vitro gas production method appears to be a suitable technique for the evaluation of the nutritive value of forages in developing countries.

Ruminal Protein Degradation Characteristics of Cell Mass from Lysine Production

  • Seo, S.;Kim, H.J.;Lee, S.Y.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.3
    • /
    • pp.364-370
    • /
    • 2008
  • Chemical analysis and in vitro studies were conducted to investigate the nutritive value for ruminants of cell mass from lysine production (CMLP) which is a by-product of the lysine manufacturing process. Proximate analysis, protein fractionation, and in vitro protein degradation using protease from Streptomyces griseus and strained ruminal fluid were carried out to estimate ruminal protein degradability of CMLP with two reference feedstuffs-soybean meal (SBM) and fish meal (FM). Amino acid composition and pepsin-HCl degradability were also determined to evaluate postruminal availability. CMLP contained 67.8% crude protein with a major portion being soluble form (45.4% CP) which was composed of mainly ammonium nitrogen (81.8% soluble CP). The amount of nucleic acids was low (1.15% DM). The total amount of amino acids contained in CMLP was 40.60% DM, which was lower than SBM (47.69% DM) or FM (54.08% DM). CMLP was composed of mainly fraction A and fraction B2, while the protein fraction in SBM was mostly B2 and FM contained high proportions of B2 and B3 fractions. The proportion of B3 fraction, slowly degradable protein, in CP was the highest in fish meal (23.34%), followed by CMLP (7.68%) and SBM (1.46%). CMLP was degraded up to 51.40% at 18 h of incubation with Streptomyces protease, which was low compared to FM (55.23%) and SBM (83.01%). This may be due to the insoluble portion of CMLP protein being hardly degradable by the protease. The in vitro fermentation by strained ruminal fluid showed that the amount of soluble fraction was larger in CMLP (40.6%) than in SBM (17.8%). However, because the degradation rate constant of the potentially degradable fraction of CMLP (2.0%/h) was lower than that of SBM (5.8%/h), the effective ruminal protein degradability of CMLP (46.95%) was slightly lower than SBM (53.77%). Unavailable fraction in the rumen was higher in CMLP (34.0%) compared to SBM (8.8%). In vitro CP degradability of CMLP by pepsin was 80.37%, which was lower than SBM (94.42%) and FM (89.04%). The evaluation of protein degradability using different approaches indicated that soluble protein in CMLP may supply a large amount of ammonia in the rumen while insoluble protein can be by-passed from microbial attacks due to its low degradability. The results from this study suggest that CMLP can be used as a protein supplement to ruminants for supplying both non-protein nitrogen to rumen microbes and rumen undegradable protein to the host animal.

Effect of sugar content on fermentation characteristics and in vitro digestibility of whole crop wheat silage

  • Song, Tae Hwa;Oh, Young Jin;Park, Jong Ho;Kang, Chon Sik;Cheong, Young Keun;Son, Jea Han;Park, Jong Chul;Kim, Yang Kil;Kim, Kyong Ho;Kim, Bo Kyeong;Park, Tae Il
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.282-282
    • /
    • 2017
  • The many factors such as sugar content, moisture, type of bacteria which predominate, buffering capacity, packing and sealing are known to be associated with silage fermentation quality. Among the sugar content are particularly important, because effective silage ensiling relies on the fermentation of sugar content to lactic acid by lactic acid bacteria. Sugar content is also known to affect the protein utilization of rumen. This study was conducted to observe the effect of water soluble carbohydrates on fermentation characteristics and in vitro digestibility of whole crop wheat silage. This experiment was used standard cultivars (Cheongwoo, Hordeum balgare L) and solid breeding line of whole crop wheat. The materials harvested at the 30 after heading day and chopped for making silage, and using this silage carried out in vitro digestibility for 6, 12, 24 and 48 hours. For the feed value, crude protein, NDF, ADF contents showed slightly higher than the before ensiling and TDN contents were slightly lower compared to the before ensiling, but did not show the significantly different. For the sugar contents, fructose and glucose contents were decreased in the after ensiling compared to the before ensiling, there were more reduced at the containing high sugar content wheat. The pH value was lower at containing high sugar content wheat. lactic acid content was significantly higher at the containing high sugar content wheat. Therefore, there was profitable to the production of high quality wheat silage at the higher the sugar content. In in vitro digestibility test, containing high sugar content HW34line showed significantly higher dry matter digestibility at 6 and 12 hours of incubation and amount of NH3-N lower other line in all incubation time. Therefore, there was profitable to the production of high quality wheat silage at the higher the sugar content.

  • PDF

Effects of Additional Levels of Phyllostachys bambusoides on Ruminal Fermentation Characteristics and Methane Emission in in vitro (왕대의 첨가수준이 반추위 in vitro 발효성상과 메탄 발생량에 미치는 영향)

  • Jo, Seong-Uk;Lee, Shin-Ja;Lee, Ye-Jun;Kim, Hyun-Sang;Eom, Jun-Sik;Choi, You-Young;Bae, Eun-Ji;Lee, Sung-Sill
    • Korean Journal of Organic Agriculture
    • /
    • v.29 no.2
    • /
    • pp.241-256
    • /
    • 2021
  • The current study was to evaluate the antioxidant activity of Phyllostachys bambusoides (PHB) as a feed additives and investigate whether its antioxidant activity could be helpful for increasing rumen fermentation characteristics and methane reduction. The antioxidant activity results showed that total polyphenols and flavonoids contents were 43.54 ± 8.68 mg CE/g and 17.13 ± 0.45 mg QE/g, respectively, and the IC50 values for 1,1-diphenyl-2-prcrylhydrazyl (DPPH) and 2,2'-azino-bis (3- ethylbenzthiazoline-6- sulphonic acid) (ABTS) radical scavenging activity were 163.13 ± 19.25 ㎍/mL and 97.07 ± 4.46 ㎍/mL, respectively. Two heads of cannulated Hanwoo (450 ± 30 kg), consuming timothy hay and a commercial concentrate (60:40, w/w) twice daily (at 09:00 and 17:30) at 2% of body weight, with free access to water and a mineral block, were used as rumen fluid donors. An in vitro incubation experiment was performed after 6, 12, 24, 48, and 72 hr with PHB added at concentration of 2, 4, and 6% of timothy hay basis. Total gas emission decreased as the amount of PHB addition increased at 6 and 24 hr of incubation. However, PHB addition did not affect total volatile fatty acid production, and methane and carbon dioxide emission also decreased as the amount of addition increased at 48 hr of incubation. Therefore, PHB was expected to be used as methane reducing additives in the ruminants.

Effects of Halogenated Compounds, Organic Acids and Unsaturated Fatty Acids on In vitro Methane Production and Fermentation Characteristics

  • Choi, N.J.;Lee, S.Y.;Sung, H.G.;Lee, S.C.;Ha, J.K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1255-1259
    • /
    • 2004
  • The objective of this study was to evaluate the effects of halogenated compounds, organic acids, unsaturated fatty acids and their mixtures on in vitro methane production and fermentative characteristics of mixed rumen microorganisms. Agents used in two in vitro experiments were bromoethanesulfonic acid (BES) and pyromellitic diimide (PMDI) as halogenated compound, fumarate and malate as organic acid, and linoleic acid and linolenic acid as unsaturated fatty acid sources. Ruminal fluid collected from a Holstein steer fed tall fescue and concentrate mixtures was incubated at $39^{\circ}C$ for 48 h with addition of those materials. Single supplementation of halogenated compounds, organic acids or unsaturated fatty acids decreased in vitro methane production (p<0.05). The second experiment was designed to investigate effects of combination of one of halogenated compounds and either organic acids or fatty acids on methane production. Lower concentration of methane and lower A:P ratio were observed with PMDI compared with BES (p<0.01). In general medium pH, VFA, total gas and hydrogen production, and dry matter degradability were affected by addition of the same compounds. In addition, PMDI+malate treatment resulted in the highest molar proportion of propionate, and lowest A:P ratio and methane production (p<0.01). Hydrogen production was highest in PMDI+linolenic acid and lowest in BES+malate treatment (p<0.01). PMDI+malate combination was the most recommendable in reducing methane production without too much influence on digestibility under conditions of present studies.

Relative Palatability to Sheep of Some Browse Species, their In sacco Degradability and In vitro Gas Production Characteristics

  • Abdulrazak, S.A.;Nyangaga, J.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1580-1584
    • /
    • 2001
  • A study was conducted to estimate the nutritive value of some selected acacia forages using palatability index, in sacco degradability and in vitro gas production characteristics. Ten wethers (mean wt. $18{\pm}3.5kg$) were offered Acacia tortilis, Acacia nilotica, Acacia mellifera, Acacia brevispica, Acacia Senegal and Leucaena leucocephala (control) using a cafeteria system to determine the species preference by the animals. The acacia species were rich in nitrogen and showed variable palatability pattern. Significant (p<0.05) differences in relative palatability index (RPI) were detected among the species with the following ranking: brevispica > leucaena > mellifera > tortilis > Senegal > nilotica. Acacia nilotica appeared to be of low relative palatability with RPI of 24% and this was attributed to relatively high phenolic concentrations. The DM potential degradability (B) and rate of degradation (c) of the species were significantly (p<0.05) different, ranging from 40.1 to 59.1% and 0.0285 to 0.0794/h respectively. Acacia species had moderate levels of rumen undegradable protein, much higher than that in leucaena. In vitro gas production results indicated the effect of polyphenolic compounds on the fermentation rate, with lower gas production recorded from A. nilotica and tortilis. Based on RPI, A. brevispica and mellifera were superior to the rest and comparable to L. leucocephala. Long-term feeding trials are required with the superior species when used as protein supplements to poor quality diets.

Interactions between Entodinium caudatum and an amino acid-fermenting bacterial consortium: fermentation characteristics and protozoal population in vitro

  • Tansol Park;Zhongtang Yu
    • Journal of Animal Science and Technology
    • /
    • v.65 no.2
    • /
    • pp.387-400
    • /
    • 2023
  • Ruminal protozoa, especially entodiniomorphs, engulf other members of the rumen microbiome in large numbers; and they release oligopeptides and amino acids, which can be fermented to ammonia and volatile fatty acids (VFAs) by amino acid-fermenting bacteria (AAFB). Studies using defaunated (protozoa-free) sheep have demonstrated that ruminal protozoa considerably increase intraruminal nitrogen recycling but decrease nitrogen utilization efficiency in ruminants. However, direct interactions between ruminal protozoa and AAFB have not been demonstrated because of their inability to establish axenic cultures of any ruminal protozoan. Thus, this study was performed to evaluate the interaction between Entodinium caudatum, which is the most predominant rumen ciliate species, and an AAFB consortium in terms of feed degradation and ammonia production along with the microbial population shift of select bacterial species (Prevotella ruminicola, Clostridium aminophilum, and Peptostreptococcus anaerobius). From an Ent. caudatum culture that had been maintained by daily feeding and transfers every 3 or 4 days, the bacteria and methanogens loosely associated with Ent. caudatum cells were removed by filtration and washing. An AAFB consortium was established by repeated transfers and enrichment with casamino acids as the sole substrate. The cultures of Ent. caudatum alone (Ec) and AAFB alone (AAFB) and the co-culture of Ent. caudatum and AAFB (Ec + AAFB) were set up in three replicates and incubated at 39℃ for 72 h. The digestibility of dry matter (DM) and fiber (NDF), VFA profiles, ammonia concentrations, pH, and microscopic counts of Ent. caudatum were compared among the three cultures. The co-culture of AAFB and Ent. caudatum enhanced DM degradation, VFA production, and Ent. caudatum cell counts; conversely, it decreased acetate: propionate ratio although the total bacterial abundance was similar between Ec and the Ec + AAFB co-culture after 24 h incubation. The ammonia production and relative abundance of C. aminophilum and P. anaerobius did not differ between AAFB alone and the Ec + AAFB co-culture. Our results indicate that Ent. caudatum and AAFB could have a mutualistic interaction that benefited each other, but their interactions were complex and might not increase ammoniagenesis. Further research should examine how such interactions affect the population dynamics of AAFB.