DOI QR코드

DOI QR Code

Effects of Additional Levels of Phyllostachys bambusoides on Ruminal Fermentation Characteristics and Methane Emission in in vitro

왕대의 첨가수준이 반추위 in vitro 발효성상과 메탄 발생량에 미치는 영향

  • 조성욱 (경상국립대학교 응용생명과학부(BK21)) ;
  • 이신자 (경상국립대학교 농업생명과학연구원&중점연구소) ;
  • 이예준 (경상국립대학교 응용생명과학부(BK21)) ;
  • 김현상 (경상국립대학교 응용생명과학부(BK21)) ;
  • 엄준식 (경상국립대학교 응용생명과학부(BK21)) ;
  • 최유영 (경상국립대학교 응용생명과학부(BK21)) ;
  • 배은지 (국립산림과학원 산림바이오소재연구소) ;
  • 이성실 (경상국립대학교 응용생명과학부(BK21), 농업생명과학연구소 & 중점연구소)
  • Received : 2021.01.27
  • Accepted : 2021.03.23
  • Published : 2021.05.31

Abstract

The current study was to evaluate the antioxidant activity of Phyllostachys bambusoides (PHB) as a feed additives and investigate whether its antioxidant activity could be helpful for increasing rumen fermentation characteristics and methane reduction. The antioxidant activity results showed that total polyphenols and flavonoids contents were 43.54 ± 8.68 mg CE/g and 17.13 ± 0.45 mg QE/g, respectively, and the IC50 values for 1,1-diphenyl-2-prcrylhydrazyl (DPPH) and 2,2'-azino-bis (3- ethylbenzthiazoline-6- sulphonic acid) (ABTS) radical scavenging activity were 163.13 ± 19.25 ㎍/mL and 97.07 ± 4.46 ㎍/mL, respectively. Two heads of cannulated Hanwoo (450 ± 30 kg), consuming timothy hay and a commercial concentrate (60:40, w/w) twice daily (at 09:00 and 17:30) at 2% of body weight, with free access to water and a mineral block, were used as rumen fluid donors. An in vitro incubation experiment was performed after 6, 12, 24, 48, and 72 hr with PHB added at concentration of 2, 4, and 6% of timothy hay basis. Total gas emission decreased as the amount of PHB addition increased at 6 and 24 hr of incubation. However, PHB addition did not affect total volatile fatty acid production, and methane and carbon dioxide emission also decreased as the amount of addition increased at 48 hr of incubation. Therefore, PHB was expected to be used as methane reducing additives in the ruminants.

이번 연구는 반추동물의 메탄 감소에 효과가 있는 천연 사료첨가제를 찾고자 실시하였다. 왕대의 총 폴리페놀 및 플라보노이드 함량은 각각 43.54 mg CE/g 및 17.13 mg QE/g이였으며, DPPH 및 ABTS 유리기 소거 활성은 IC50 값이 각각 163.13 및 97.07 ㎍/mL으로 측정되었다. In vitro 시험은 왕대의 첨가수준을 달리하여 발효 시간대별(6, 12, 24 및 48 hr) 실시하였다. pH는 발효시간동안 적정 범위였으며, 건물 소화율 및 미생물 성장량은 모든 발효 시간대별 처리구에서 대조구와 유의적(P>0.05)인 차이를 보이지 않았다. 총 가스 발생량은 발효 6 및 24시간에 첨가량이 증가함에 따라 감소(Linear effects, 6 hr, P=0.0004; 12 hr, P=0.0055)하였다. 메탄 및 이산화탄소 발생량은 발효 48시간대 첨가량이 증가함에 따라 감소하였다(Linear effects, P=0.022; P=0.0188). 또한 왕대의 첨가는 총 휘발성 지방산 생성량에 부정적인 영향을 미치지 않았고, 발효 48시간대 butyrate 함량은 첨가량이 증가함에 따라 증가(Linear effects, P=0.0001)하였다. 따라서 플라보노이드를 함유하고 있는 왕대의 첨가는 in vitro 반추위 메탄을 저감할 수 있고 발효성상에 부정적인 영향을 미치지 않았다. 그러므로 반추동물 메탄저감 첨가제로서의 활용 가능성이 있을 것으로 기대된다.

Keywords

Acknowledgement

본 연구는 농촌진흥청 연구사업(세부과제번호: PJ01477803)에서 지원 받았음.

References

  1. AOAC. 2012. Official Methods of Analysis of AOAC INTERNATIONAL, 19th Edition.
  2. Benzie, I. F. and J. J. Strain. 1966. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal. Biochem. 239(1): 70-76. https://doi.org/10.1006/abio.1996.0292
  3. Bergman, E. N. 1990. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol. Rev. 70(2): 567-590. https://doi.org/10.1152/physrev.1990.70.2.567
  4. Bodas, R., S. Lopez, M. Fernandez, R. Garcia-Gonzalez, A. B. Rodriguez, R. J. Wallace, and J. S. Gonzalez. 2008. In vitro screening of the potential of numerous plant species as antimethanogenic feed additives for ruminants. Anim. Feed Sci. Technol. 145(1-4): 245-258. https://doi.org/10.1016/j.anifeedsci.2007.04.015
  5. Bodas, R., N. Prieto, R. Garcia-Gonzalez, S. Andres, F. J. Giraldez, and S. Lopez. 2012. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol. 176(1-4): 78-93. https://doi.org/10.1016/j.anifeedsci.2012.07.010
  6. Broudiscou, L., Y. Papon, and A. F. Broudiscou. 2000. Effects of dry plant extracts on fermentation and methanogenesis in continuous culture of rumen microbes. Anim. Feed Sci. Technol. 87(3-4): 263-277. https://doi.org/10.1016/S0377-8401(00)00193-0
  7. Broudiscou, L., Y. Papon, and A. F. Broudiscou. 2002. Effects of dry plant extracts on feed degradation and the production of rumen microbial biomass in a dual outflow fermenter. Anim. Feed Sci. Technol. 101(1-4): 183-189. https://doi.org/10.1016/S0377-8401(02)00221-3
  8. Busquet, M., S. Calsamiglia, A. Ferret, and C. Kamel. 2006. Plant extracts affect in vitro rumen microbial fermentation. J. Dairy Sci. 89(2): 761-771. https://doi.org/10.3168/jds.S0022-0302(06)72137-3
  9. Cushnie, T. T. and A. J. Lamb. 2005. Antimicrobial activity of flavonoids. Int. J. Antimicrob. Agents. 26(5): 343-356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  10. Flachowsky, G. 2011. Carbon-footprints for food of animal origin, reduction potentials and research need. J. Appl. Anim. Res. 39(1): 2-14. https://doi.org/10.1080/09712119.2011.570047
  11. Getachew, G., P. H. Robinson, E. J. DePeters, and S. J. Taylor. 2004. Relationships between chemical composition, dry matter degradation and in vitro gas production of several ruminant feeds. Anim. Feed Sci. Technol. 111(1-4): 57-71. https://doi.org/10.1016/S0377-8401(03)00217-7
  12. Goel, G. and H. P. Makkar. 2012. Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod. 44(4): 729-739. https://doi.org/10.1007/s11250-011-9966-2
  13. Hiltner, P. and B. A. Dehority. 1983. Effect of soluble carbohydrates on digestion of cellulose by pure cultures of rumen bacteria. Appl. Environ. Microbiol. 46(3): 642-648. https://doi.org/10.1128/aem.46.3.642-648.1983
  14. Hoover, W. H. 1986. Chemical factors involved in ruminal fiber digestion. J. Dairy Sci. 69(10): 2755-2766 https://doi.org/10.3168/jds.S0022-0302(86)80724-X
  15. Hu, C. J., D. H. Xu, H. L. Chen, and K. Yuan. 2012. Contents of the total flavonoids and the total phenols and antioxidant activities in the leaf from different species of Phyllostachys. Trans tech publications. 343: 1103-1108.
  16. Joch, M., L. Cermak, J. Hakl, B. Hucko, D. Duskova, and M. Marounek. 2016. In vitro screening of essential oil active compounds for manipulation of rumen fermentation and methane mitigation. Asian. Australas. J. Anim. Sci. 29(7): 952. https://doi.org/10.5713/ajas.15.0474
  17. Johnson, K. A. and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73(8): 2483-2492. https://doi.org/10.2527/1995.7382483x
  18. Ju, I. O., G. T. Jung, J. Ryu, J. S. Choi, and Y. G. Choi. 2005. Chemical components and physiological activities of bamboo (Phyllostachys bambusoides Starf) extracts prepared with different methods. Korean J. Food Sci. Thechnol. 37(4): 542-548.
  19. Kato, S., K. Sato, H. Chida, S. Roh, S. Ohwada, S. Sato, P. Guilloteau, and K. Katoh. 2011. Effects of Na-butyrate supplementation in milk formula on plasma concentrations of GH and insulin, and on rumen papilla development in calves. J. Endocrinol. 211(3): 241-248. https://doi.org/10.1530/JOE-11-0299
  20. Kim, D. S., M. H. Choi, and H. Shin. 2018. Polyphenol contents and antioxidant activities of domestic bamboo leaves with different extraction solvents. J. Adv. Eng. and Tech. 11(1): 7-13.
  21. Kim, E. T., L. L. Guan, S. J. Lee, S. M. Lee, S. S. Lee, I. D. Lee, S. K. Lee, and S. S. Lee. 2015. Effects of flavonoid-rich plant extracts on in vitro ruminal methanogenesis, microbial populations and fermentation characteristics. Asian-australas. J. Anim. Sci. 28(4): 530. https://doi.org/10.5713/ajas.14.0692
  22. Kim, M. J., M. W. Byun, and M. S. Jang. 1996. Physiological and antibacterial activity of bamboo (Sasa coreana Nakai) leaves. J. Korean Soc. Food Sci. Nutr. 25(1): 135-142
  23. Korea Forest Research Institute. 2016. Distribution status of bamboo forest resources in Korea. 16-27.
  24. Lee, M. and G. Moon. 2003. Antioxidative effects of Korean bamboo trees, Wang-dae, Somdae, Maengjong-juk, Jolit-dae and O-juk. Korean J. Food Sci. Technol. 35(6): 1226-1232.
  25. Lee, S. J., N. H. Shin, G. M. Chu, and S. S. Lee. 2011. Effects of synbiotics containing anaerobic microbes and prebiotics on in vitro fermentation characteristics and in situ disappearance rate of fermented-TMR. Asian. Australas. J. Anim. Sci. 24(11): 1577-1586. https://doi.org/10.5713/ajas.2011.11057
  26. Li, X. B., T. F. Shupe, G. F. Peter, C. Y. Hse, and T. L. Eberhardt. 2007. Chemical changes with maturation of the bamboo species Phyllostachys pubescens. J. Trop. For. Sci. 19(1): 6-12.
  27. Li, X., O. Hojberg, N. Canibe, and B. B. Jensen. 2016. Phylogenetic diversity of cultivable butyrate-producing bacteria from pig gut content and feces. J. Anim. Sci. 94(3): 377-381.
  28. Licitra, G., T. M. Hernandez, and P. J. Van Soest. 1996. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 57: 347-358. https://doi.org/10.1016/0377-8401(95)00837-3
  29. Makkar, H. P. S. 2003. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Ruminant Res. 49(3): 241-256. https://doi.org/10.1016/S0921-4488(03)00142-1
  30. McDonald, P. 2002. Animal nutrition. Pearson education.
  31. Meale, S. J., T. A. McAllister, K. A. Beauchemin, O. M. Harstad, and A. V. Chaves. 2012. Strategies to reduce greenhouse gases from ruminant livestock. Acta Agric. Scand. A Anim. Sci. 62(4): 199-211.
  32. Park, Y. K., M. H. Koo, M. Ikegaki, and J. Contado. 1997. Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Arq. Biol. Tecnol. 40(1): 97-106.
  33. Patra, R. C., S. B. Lal, and D. Swarup. 1996. Biochemical profile of rumen liquor, blood and urine in experimental acidosis in sheep. Small Rumin. Res. 19(2): 177-180. https://doi.org/10.1016/0921-4488(95)00743-1
  34. Pryde, S. E., S. H. Duncan, G. L. Hold, C. S. Stewart, and H. J. Flint. 2002. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217: 133-139. https://doi.org/10.1111/j.1574-6968.2002.tb11467.x
  35. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26(9-10): 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  36. SAS. 2011. SAS/STAT Software for PC. Version 9.2. SAS Institute, Cary, NC, U.S.A.
  37. Scheppach, W. 1994. Effects of short chain fatty acids on gut morphology and function. Gut. 35(1): S35-S38. https://doi.org/10.1136/gut.35.1_Suppl.S35
  38. Singleton, V. L. and J. A. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 16(3): 144-158.
  39. Smith, P., D. Martino, Z. Cai, D. Gwary, H. Janzen, P. Kumar, B. McCarl, S. Ogle, F. O'Mara, and C. Rice. 2007. Policy and technological constraints to implementation of greenhouse gas mitigation options in agriculture. Agric. Ecosyst. Environ. 118(1-4): 6-28. https://doi.org/10.1016/j.agee.2006.06.006
  40. Stewart, C. S. 1991. The rumen bacteria. In: Rumen Microbial Metabolism and Ruminant Digestion (Ed. J. P. Jouany) INRA Editions, Paris, France. 15-26.
  41. Theodorou, M. K., B. A. Williams, M. S. Dhanoa, A. B. McAllan, and J. France. 1994. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed Sci. Technol. 48(3-4): 185-197. https://doi.org/10.1016/0377-8401(94)90171-6
  42. Van Soest, P. V., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74(10): 3583-3597. https://doi.org/10.3168/jds.s0022-0302(91)78551-2
  43. Whitman, W. B., T. L. Bowen, and D. R. Boone. 1992. The methanogenic bacteria. The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, applications. Springer-Verlag. New York. 1(2): 719-767.
  44. Wu, J., S. Wu, T. Hsieh, and S. Chang. 2002. Effects of copper-phosphorous salt treatments on green colour protection and fastness of ma bamboo (Dendrocalamus latiflorus). Polym. Degrad. Stab. 78(2): 379-384. https://doi.org/10.1016/S0141-3910(02)00190-8