• Title/Summary/Keyword: rule based fuzzy logic

Search Result 175, Processing Time 0.026 seconds

Fuzzy logic control of robotic deburring process using acoustic emission feedback

  • Choi,Gi Sang;Choi, Gi Heung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1687-1692
    • /
    • 1991
  • Burrs, created when metals deform plastically, are by-products of most machining processes. The increasing requirements of precision and reliability in manufacturing processes have led to the development of systems for automated deburring. In this paper the motivations and requirements for automated robotic deburring are discussed. Also, the feasibility of automating the deburring process using fuzzy logic controller is investigated. In implementing the fuzzy logic controller, particular attention is paid to the acoustic emission sensing for the characterization and feedback control of the burr removal process. The results of the experiments reveal the rule based control scheme based on fuzzy logics can be a good alternative to traditional control schemes.

  • PDF

Speed Control of SRM by Pl Controller with Fuzzy Logic Modifier (Fuzzy Logic Modifier를 가진 Pl 제어기에 의한 스위치드 리럭턴스 전동기의 속도제어)

  • Kim, Bo-Hyung;Kim, Jae-Mun;Won, Chung-Yuen
    • Journal of IKEEE
    • /
    • v.2 no.2 s.3
    • /
    • pp.299-308
    • /
    • 1998
  • In this paper, reliable switched reluctance motor(SRM) drive system and 4-rule based fuzzy logic modifier(FLM) of the conventional PI controller are presented. The i80C196KC, low-cost one-chip microcontroller is used for designing SRM drive controller which include the speed controller and the starting sequence. The fuzzy logic modifier which exhibits a stabilizing effects on the closed-loop system, has good robustness regarding the improperly tuned PI controller. The simulation and experimental results are performed to verify the capability of proposed control method on 6/4 salient type SRM.

  • PDF

Self-Organizing Fuzzy Control of a Flexible Joint Manipulator (유연 관절 매니퓰레이터의 자기 구성 퍼지 제어)

  • Park, J.H.;Lee, S.B.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.8
    • /
    • pp.92-98
    • /
    • 1995
  • The position control of flexible joint manipulator is investigated by applying the self-organizing fuzzy logic controller (SOC) proposed by Procyk and Mamdani. The SOC is a heuristic rule-based controller and a further extension of an ordinary fuzzy controller, which has a hierachy structrue which consists of an algorithm being identical to a fuzzy controller at the lower ollp and a learning algorithm accomodating the performance evalution and rule modification function at the upper ollp. This form of control can be used in those complex systems which have been too difficult to control or which in the past have had to rely on the experience of a human operator. Even though the significant dynamic coupling of the motors and links on the flexible joint manipulator, the performance of command-following is good by applying the proposed SOC.

  • PDF

Design and Analysis of Fuzzy PID Controller for Control of Nonlinear System (비선형 시스템 제어를 위한 퍼지 PID 제어기의 설계 및 해석)

  • Lee, Chul-Heui;Kim, Sung-Ho
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.155-162
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance, FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and to increase efficiency. a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy PI and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and the resultant rule base is Macvicar-Whelan type. And the membership function is a Gaussian function. The frequency response information is used in tuning of the membership functions. Also a tuning strategy for the scaling factors is proposed based on the relationship between PID gain and the scaling factors. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

Structure Preserving Dimensionality Reduction : A Fuzzy Logic Approach

  • Nikhil R. Pal;Gautam K. Nandal;Kumar, Eluri-Vijaya
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.426-431
    • /
    • 1998
  • We propose a fuzzy rule based method for structure preserving dimensionality reduction. This method selects a small representative sample and applies Sammon's method to project it. The input data points are then augmented by the corresponding projected(output) data points. The augmented data set thus obtained is clustered with the fuzzy c-means(FCM) clustering algorithm. Each cluster is then translated into a fuzzy rule for projection. Our rule based system is computationally very efficient compared to Sammon's method and is quite effective to project new points, i.e., it has good predictability.

  • PDF

Design of Fuzzy Logic Controller for a SRM Variable Speed Drive on Vehicle (차량용 SRM의 가변속 구동을 위한 퍼지 제어기 설계)

  • 송병섭;엄기명;윤용호;원충연;김덕근
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.193-198
    • /
    • 2000
  • Switched reluctance motor drives have been finding their applications in the variable speed drives due to their relatively low cost, simple and robust structure, controllability and high efficiency. Fuzzy control does not need any model of plant. It is based on plant operator experience and heuristics. Fuzzy control is basically adaptive and gives robust performance for plant parameter variation. This paper deals with the sped control of switched reluctance motor using fuzzy controller with 7-rule based fuzzy logic. The proposed fuzzy controller is superior to the control performance of the conventional PI controller. The fuzzy controller is implemented by 80C196KC, 16 bit one-chip microcontroller.

  • PDF

Context-Awareness Healthcare for Disease Reasoning Based on Fuzzy Logic

  • Lee, Byung-Kwan;Jeong, Eun-Hee;Lee, Sang-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.247-256
    • /
    • 2016
  • This paper proposes Context-Awareness Healthcare for Disease Reasoning based on Fuzzy Logic. It consists of a Fuzzy-based Context-Awareness Module (FCAM) and a Fuzzy-based Disease Reasoning Module (FDRM). The FCAM computes a Correlation coefficient and Support between a Condition attribute and a Decision attribute and generates Fuzzy rules by using just the Condition attribute whose Correlation coefficient and Support are high. According to the result of accuracy experiment using a SIPINA mining tool, those generated by Fuzzy Rule based on Correlation coefficient and Support (FRCS) and Improved C4.5 are 0.84 and 0.81 each average. That is, compared to the Improved C4.5, the FRCS reduces the number of generated rules, and improves the accuracy of rules. In addition, the FDRM can not only reason a patient’s disease accurately by using the generated Fuzzy Rules and the patient disease information but also prevent a patient’s disease beforehand.

Design and Analysis of Fuzzy PID Control for Nonlinear System (비선형 시스템을 위한 퍼지 PID 제어기의 설계 및 해석)

  • Kim, Sung-Ho;Lee, Cheul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.650-652
    • /
    • 2000
  • Although Fuzzy Logic Controller(FLC) adopted three terms as input gives better performance. FLC is in general composed of two-term control because of the difficulty in the construction of fuzzy rule base. In this paper, a three-term FLC which is similar to PID control but acts as a nonlinear controller is proposed. To reduce the complexity of the rule base design and increase efficiency, a simplified fuzzy PID control is induced from a hybrid velocity/position type PID algorithm by sharing a common rule base for both fuzzy Pi and fuzzy PD parts. It is simple in structure, easy in implementation, and fast in calculation. The phase plane technique is applied to obtain the rule base for fuzzy two-term control and them. The resultant rule base is Macvicar-Whelan type. The frequency response information is used in tuning of membership functions. Also a tuning strategy for the scaling factors is Proposed based on the relationship between PID gain and them. Simulation results show better performance and the effectiveness of the proposed method.

  • PDF

Mobile Robot Navigation using Optimized Fuzzy Controller by Genetic Algorithm

  • Zhao, Ran;Lee, Dong Hwan;Lee, Hong Kyu
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.1
    • /
    • pp.12-19
    • /
    • 2015
  • In order to guide the robots move along a collision-free path efficiently and reach the goal position quickly in the unknown multi-obstacle environment, this paper presented the navigation problem of a wheel mobile robot based on proximity sensors by fuzzy logic controller. Then a genetic algorithm was applied to optimize the membership function of input and output variables and the rule base of the fuzzy controller. Here the environment is unknown for the robot and contains various types of obstacles. The robot should detect the surrounding information by its own sensors only. For the special condition of path deadlock problem, a wall following method named angle compensation method was also developed here. The simulation results showed a good performance for navigation problem of mobile robots.

Robust Automatic Parking without Odometry using an Evolutionary Fuzzy Logic Controller

  • Ryu, Young-Woo;Oh, Se-Young;Kim, Sam-Yong
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.3
    • /
    • pp.434-443
    • /
    • 2008
  • This paper develops a novel automatic parking algorithm based on a fuzzy logic controller with the vehicle pose for the input and the steering rate for the output. It localizes the vehicle by using only external sensors - a vision sensor and ultrasonic sensors. Then it automatically learns an optimal fuzzy if-then rule set from the training data, using an evolutionary fuzzy system. Furthermore, it also finds the green zone for the ready-to-reverse position in which parking is possible just by reversing. It has been tested on a 4-wheeled Pioneer mobile robot which emulates the real vehicle.