• 제목/요약/키워드: rule base

검색결과 632건 처리시간 0.025초

XRML 기반 비교쇼핑몰의 구조와 배송비 산정에 관한 실증분석 (Architecture of XRML-based Comparison Shopping Mall and Its Performance on Delivery Cost Estimation)

  • 이재규;강주영
    • 한국경영과학회지
    • /
    • 제30권2호
    • /
    • pp.185-199
    • /
    • 2005
  • With the growth of internet shopping malls, there is increasing interest in comparison shopping mall. However most comparison sites compare only book prices by collecting simple XML data and do not provide .the exact comparison Including precise shipping costs. Shipping costs vary depending on each customer's address, the delivery method, and the category of selected goods, so rule based system is required in order to calculate exact shipping costs. Therefore, we designed and implemented comparison shopping mall which compares not only book prices but also shipping costs using rule based inference. By adopting the extensible Rule Markup language (XRML) approach, we proposed the methodology of extracting delivery rules from Web pages of each shopping mall. The XRML approach can facilitate nearly automatic rule extraction from Web pages and consistency maintenance between Web pages and rule base. We developed a ConsiderD system which applies our rule acquisition methodology based on XRML. The objective of the ConsiderD system is to compare the exact total cost of books including the delivery cost over Amazon.com, BarnesandNoble.com, and Powells.com. With this prototype, we conducted an experiment to show the potential of automatic rule acquisition from Web pages and illustrate the effect of delivery cost.

데이타 베이스를 이용한 자기 구성 퍼지 제어기 (Self-organizing fuzzy controller using data base)

  • 윤형식;이평기;전기준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.579-583
    • /
    • 1991
  • A fuzzy logic controller with rule modification capability is proposed to overcome the difficulty of obtaining control rules from the human operators. This new SOC algorithm modifies control rules by a fuzzy inference machine utilizing data base. Computer simulation results show good performances on both a linear system and a nonlinear system.

  • PDF

퍼지지식베이스에서의 효율적인 정보검색을 위한 규칙생성 및 근사추론 알고리듬 설계 (Rule Generation and Approximate Inference Algorithms for Efficient Information Retrieval within a Fuzzy Knowledge Base)

  • 김형수
    • 디지털콘텐츠학회 논문지
    • /
    • 제2권2호
    • /
    • pp.103-115
    • /
    • 2001
  • 본 논문은 퍼지지식베이스에서 러프 집합과 요인공간이론을 적용하여 최소 결정규칙 생성과 근사추론 연산을 수행하는 두 개의 알고리듬을 제안한다. 최소 결정규칙의 생성은 속성요인에 관련한 상관분석과 베이지안 정리를 응용한 데이터의 분류기법과 리덕트에 의해 수행된다. 이 결정규칙으로 이루어진 최소지식 베이스의 탐색공간에서 소속함수와 t-norm의 합성 연산을 정의한 근사추론 방식에 의해 특정 객체를 검색한다. 본 연구의 러프와 퍼지연산 모듈을 수행하는 제안 알고리듬 기법을 객체및 속성수를 증가시키는 시뮬레이션을 통해 다른 검색이론 및 합성연산 방식과 비교하였다. 그 결과 다른 제 방법보다 본 연구에서 제안하는 기법이 특정 객체를 추출하기 위한 검색연산 시간에 있어 보다 빠르게 검색됨을 입증하였다.

  • PDF

사례기반추론과 규칙기반추론을 이용한 e-쇼핑몰의 상품추천 시스템 (Recommending System of Products on e-shopping malls based on CBR and RBR)

  • 이건호;이동훈
    • 정보처리학회논문지D
    • /
    • 제11D권5호
    • /
    • pp.1189-1196
    • /
    • 2004
  • e쇼핑몰 경영자들은 고객들의 다양한 제품 구매 욕구를 충족시키기 위한 효율적 시스템에 많은 관심을 가지고 있다. 인터넷 쇼핑몰 운영에 있어 고객들의 개인적 구매 특성 및 취향을 파악하여 고객들을 효과적으로 관리하는데 많은 어려움이 있다. 상품 추천의 과정이 기획된 소수의 특정 상품을 고객의 유형 및 특성들의 고려 없이 공급자 중심으로 이루어져 고객관리의 문제점으로 지적되고 있다. 본 연구에서는 고객위주의 추천을 위해 규칙기반추론(Rule-Based Reasoning, RBR)과 사례기반추론(Case-Based Reasoning, CBR)을 하여 고객의 취향 및 구매 특성에 따른 추천방법을 제시한다. 기존의 제품 판매정보와 고객정보를 이용해 생성한 규칙베이스와 사례베이스의 고객특성과 입력된 고객특성의 유사도를 평가해서 고객의 취향에 따라 추천하도록 한다. 생성된 규칙과 사례기반의 추론으로 기존의 정보를 효과적으로 사용하고 또한 고객 및 시장 상황의 변화를 인식하고 지속적인 학습을 수행하여 지능적 추천이 이루어진다.

주가 예측을 위한 규칙 탐사 및 매칭 (Rule Discovery and Matching for Forecasting Stock Prices)

  • 하유민;김상욱;원정임;박상현;윤지희
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제34권3호
    • /
    • pp.179-192
    • /
    • 2007
  • 본 논문에서는 주식 데이타베이스로부터 과거 주가 변화 패턴에 대한 규칙을 탐사함으로써 투자자에게 주식 투자 유형을 추천해 주는 방안에 관하여 논의한다. 먼저, 본 논문에서는 주식 투자 유형의 추천을 위한 새로운 규칙 모델을 정의한다. 제안된 모델에서는 빈번하게 발생하는 주가 변화 패턴의 이후의 주가 변화 경향이 투자자의 투자 조건과 매치하는 경우, 이 종목에 대한 투자 유형을 추천하도록 하는 방식을 사용한다. 이때, 빈번하게 발생하는 패턴을 규칙의 헤드로 간주하며, 이후의 주가 변화 경향을 규칙의 바디로 간주한다. 본 연구에서는 규칙 헤드는 투자자의 특성에 별다른 영향을 받지 않는 반면, 규칙 바디에 대한 조건은 투자자마다 다르다는 점에 착안하여 규칙 탐사 과정에서 전체 규칙이 아닌 규칙 헤드들만을 탐사하여 저장해 두는 새로운 방식을 제안한다. 이 결과, 투자자 별로 달라질 수 있는 규칙 바디에 대한 조건을 유연하게 정의하는 것을 허용하며, 규칙의 수를 줄임으로써 전체 규칙 탐사 성능을 개선할 수 있다. 효율적인 규칙 탐사와 매칭을 위하여 빈번 패턴들을 효과적으로 탐사하는 방법, 빈번 패턴 베이스를 구축하는 방법, 그리고 이들을 인덱싱 하는 방법을 제안한다. 또한, 투자자의 질의가 발생하는 경우, 빈번 패턴 베이스로부터 이와 매치되는 규칙을 발견하고, 이 결과를 이용하여 투자자에게 투자 유형을 추천해 주는 방법을 제안한다. 실제 주식 데이타를 이용한 다양한 실험을 통하여 제안된 기법의 우수성을 규명한다.

Building a Business Knowledge Base by a Supervised Learning and Rule-Based Method

  • Shin, Sungho;Jung, Hanmin;Yi, Mun Yong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권1호
    • /
    • pp.407-420
    • /
    • 2015
  • Natural Language Question Answering (NLQA) and Prescriptive Analytics (PA) have been identified as innovative, emerging technologies in 2015 by the Gartner group. These technologies require knowledge bases that consist of data that has been extracted from unstructured texts. Every business requires a knowledge base for business analytics as it can enhance companies' competitiveness in their industry. Most intelligent or analytic services depend a lot upon on knowledge bases. However, building a qualified knowledge base is very time consuming and requires a considerable amount of effort, especially if it is to be manually created. Another problem that occurs when creating a knowledge base is that it will be outdated by the time it is completed and will require constant updating even when it is ready in use. For these reason, it is more advisable to create a computerized knowledge base. This research focuses on building a computerized knowledge base for business using a supervised learning and rule-based method. The method proposed in this paper is based on information extraction, but it has been specialized and modified to extract information related only to a business. The business knowledge base created by our system can also be used for advanced functions such as presenting the hierarchy of technologies and products, and the relations between technologies and products. Using our method, these relations can be expanded and customized according to business requirements.

퍼지규칙으로 구성된 지식기반시스템에서 동적 추론전략 (A Strategy of Dynamic Inference for a Knowledge-Based System with Fuzzy Production Rules)

  • 송수섭
    • 한국경영과학회지
    • /
    • 제25권4호
    • /
    • pp.81-95
    • /
    • 2000
  • A knowledge-based system with fuzzy production rules is a representation of static knowledge of an expert. On the other hand, a real system such as the stock market is dynamic in nature. Therefore we need a strategy to reflect the dynamic nature of real system when we make inferences with a knowledge-based system. This paper proposes a strategy of dynamic inferencing for a knowledge-based system with fuzzy production rules. The strategy suggested in this paper applies weights of attributes of conditions of a rule in the knowledge-base. A degree of match(DM) between actual input information and a condition of a rule is represented by a value [0,1]. Weights of relative importance of attributes in a rule are obtained by AHP(Analytic Hierarcy Process) method. Then these weights are applied as exponents for the DM, and the DMs in a rule are combined, with MIN operator, into a single DM for the rule. In this way, overall DM for a rule changes depending on the importance of attributes of the rule. As a result, the dynamic nature of a real system can be incorporated in an inference with fuzzy production rules.

  • PDF

생산일정계획을 위한 지식 기반 모의실험 (Knowledge Based Simulation for Production Scheduling)

  • 나태영;김승권;김선욱
    • 대한산업공학회지
    • /
    • 제23권1호
    • /
    • pp.197-213
    • /
    • 1997
  • It is not easy to find a good production schedule which can be used in practice. Therefore, production scheduling simulation with a simple dispatching rule or a set of dispatching rules is used. However, a simple dispatching rule may not create a robust schedule, for the same rule is blindly applied to all internal production processes. The presumption is that there might be a specific combination of appropriate rules that can improve the efficiency of a total production system for a certain type of orders. In order to acquire a better set of dispatching rules, simulation is used to examine the performance of various combinations of dispatching rule sets. There are innumerable combination of rule sets. Hence it takes too much computer simulation time to find a robust set of dispatching rule for a specific production system. Therefore, we propose a concept of the knowledge based simulation to circumvent the problem. The knowledge based simulation consists of knowledge bases, an inference engine and a simulator. The knowledge base is made of rule sets that is extracted from both simulation and human intuition obtained by the simulation studies. For a certain type of orders, the proposed system provides several sets of dispatching rules that are expected to generate better results. Then the scheduler tries to find the best by simulating all proposed set of rules with the simulator. The knowledge-based simulator armed with the acquired knowledge has produced improved solutions in terms of time and scheduling performance.

  • PDF

Constructing intelligent agent for chromosome knowledge base

  • Shin, Yong-Won
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2003년도 Proceeding
    • /
    • pp.3-9
    • /
    • 2003
  • The task for chromosome analysis and diagnosis by experienced cytogenetists are being concerned as repetitive, time consuming job and expensive. For that reason, intelligent agent based on chromosome knowledge base has been established to be able to analyze chromosomes and obtain necessary advises from the knowledge base instead of human experts. That is to say, knowledge base by IF THEN production rule was implemented to a knowledge domain with normal and abnormal chromosomes, and then the inference results by knowledge base could enter the inference data into the database. Experimental data were composed of normal chromosomes of 2,736 patients 'cases and abnormal chromosomes of 259 patients' cases that have been obtained from GTG-banding metaphase peripheral blood and amniotic fluid samples. The completed intelligent agent for chromosome knowledge base provides variously morphological information by analysis of normal or abnormal chromosomes and it also has the advantage of being able to consult with user on chromosome analysis and diagnosis.

  • PDF

뉴럴-퍼지 융합을 이용한 퍼지 제어 규칙의 자동생성에 관한 연구 (Auto Generation of Fuzzy Control Rule using Neural-Fuzzy Fusion)

  • 임광우;김용호;강훈;전홍태
    • 전자공학회논문지B
    • /
    • 제29B권11호
    • /
    • pp.120-129
    • /
    • 1992
  • In this paper we propose a fuzzy-neural network(FNN) which includes both advantages of the fuzzy logic and the neural network. The basic idea of the FNN is to realize the fuzzy rule-base and the process of reasoning by neural network and to make the corresponding parameters be expressed by the connection weights of neural network. After constructing the FNN, a novel controller consisting of a conventional P-controller and a FNN is explained. In this control scheme, the rule-base of a FNN are automatically generated by error back-propagation algorithm. Also the parallel connection of the P-controller and the FNN can guarantee the stability of a plant at initial stage before the rules are completely created. Finally the effectiveness of the proposed strategy will be verified by computer simulations using a 2 degree of freedom robot manipulator.

  • PDF