• Title/Summary/Keyword: rubble mound structure

Search Result 70, Processing Time 0.025 seconds

Experiments on Stability of Tetrapods on Rear Slope of Rubble Mound Structures under Wave Overtopping Condition (월파조건에서 경사제 항내측 사면에 거치된 테트라포드의 안정성 실험)

  • Kim, Young-Taek;Lee, Jong-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.6
    • /
    • pp.357-366
    • /
    • 2021
  • In this study, hydraulic model tests were performed to investigate the stability of armor units at harbor side slope for rubble mound structures. The Korean design standard for harbor and fishery port suggested the design figures that showed the ratio of the armor weight for each location of rubble mound structures and it could be known that the same weight ratio was needed to the sea side and harbor side (within 0.5H from the minimum design water level) slope of rubble mound structures. The super structures were commonly applied to the design process of rubble mound structures in Korea and the investigation of the effects of super structures would be needed. The stability number (Nod = 0.5) was applied (van der Meer, 1999) and it showed that the armor (tetrapod) weight ratio for harbor side slope of rubble mound structures needed 0.8 times of that for sea side slope.

Experimental study for Hydraulic Characteristics as the Permeable underlayer width of Rubble Mound Structure (사석방파제 투수층 두께에 따른 사면상의 수리특성에 관한 실험연구)

  • 윤한삼;남인식;김종욱;류청로
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.160-165
    • /
    • 2001
  • In this study, the effects on hydraulic characteristics are discussed as the permeable underlayer width of the rubble mound structure changes. A series of hydraulic experiments were performed and wave run-up, reflection and set-up were investigated. Results indicated that wave run-down was affected by the water out from the permeable underlayer during down-rush. As the width increased, relative wave run-up decreased.

  • PDF

Numerical analysis on Deformation of Seabed Structures with various size materials by DEM

  • Kim, Mi-Kum;Kim, Chang-Je
    • Journal of Navigation and Port Research
    • /
    • v.31 no.7
    • /
    • pp.589-595
    • /
    • 2007
  • In the majority of previous studies on deformation of seabed structures using DEM, elements of structures have been assumed that it is composed with uniform materials or received fixed wave force, despite that actual submerged structures are composed with various size materials and influenced by complicated fluid field. The goal of this study is to develop a new model for analysis of seabed structure deformation using discontinuous structures composed with various size materials. As the first phase, a model using DEM and VOF, which can compute the deformation of submerged structures composed with various size materials, such as rubble mound structures, is proposed. A model test is carried out and then the validity of the model is discussed.

Numerical Analysis on Deformation of Submerged Structures using 2-Dimensional VOF-DEM Model

  • Kim, Mi-Kum;Kim, Chang-Je
    • Journal of Navigation and Port Research
    • /
    • v.31 no.9
    • /
    • pp.785-791
    • /
    • 2007
  • In this paper we proposed a model that the deformation of the submerged rubble mound breakwaters composed with materials of various size, induced by wave action, can be computed. The water particle kinematics by waves in porous mound structure are computed by CADMAS-SURF, then the deformation of structure is computed using DEM module. To investigate the interaction of wave and sectional deformation of structures, analysis is accomplished by two steps. Analysis at the first step is executed with incipient mound. And analysis at the second step is executed with deformed mound by wave action. Furthermore, behaviors of materials are influenced by various properties such as the contact stiffness and the friction angle. Therefore, in order to present the behavior of the element caused by various properties, computations are accomplished with random coefficients by using the Monte Carlo simulation.

Numerical Simulation for Deformation Characteristics of Artificial Reef (인공리프 제체의 변형특성에 관한 수치시뮬레이션)

  • Yoon, Seong-Jin;Park, Young-Suk;Kim, Kyu-Han;Pyun, Chong-Kun
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.18-24
    • /
    • 2010
  • Submerged rubble structures include artificial reef and the mound part of the rubble mound breakwater. Artificial reef is a type of the submerged wave absorbing structure installed in a coastal zone to prevent beach erosion and designed to initially reduce the energy of incoming waves so that its run-up height and overtopping quantity can be decreased. In order to ascertain the stability of such submerged rubble structures, minimum weight of the rubble has to be calculated first from the incoming wave height using Hudson's formula or Brebner-Donnelly formula. Based on the calculated minimum weight, a model is built for use in a hydraulic model test carried out to check its stability. The foregoing two formulas used to calculate the minimum weight are empirically derived formulas based on the result of the tests on the rubble mound breakwater and it is, therefore, difficult for us to apply them directly in the calculation of the minimum weight of the submerged structures. Accordingly, this study comes up with a numerical simulation method capable of deformation analysis for rubble structures. This study also tries to identify the deformation mechanism of the submerged rubble structures using the numerical simulation. The method researched through this study will be sufficient for use for usual preparations of the design guidelines for submerged rubble structures.

Experiments on Stability of Armor Rocks on Rear Slope of Rubble Mound Structures under Wave Overtopping Condition with Rectangular Crest Element (월파조건에서 직사각형 상치콘크리트가 설치된 경사제 항내측 사면에 거치된 피복석의 안정성 실험)

  • Young-Taek Kim;Jong-In Lee
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.5
    • /
    • pp.102-108
    • /
    • 2023
  • In this study, hydraulic model tests were performed to investigate the stability of armor units at harbor side slope for rubble mound structures. The armor units on the rear slope were rocks. The Korean design standard for harbor and fishery port suggested the design figures that showed the ratio of the armor weight for each location of rubble mound structures and it could be known that the same weight ratio was needed to the sea side and rear side slope of rubble mound structures. The crest elements were commonly applied to the design process of rubble mound structures in Korea and the investigation of the effects of super structures would be needed. The damage rate (S =2) was applied and the stable wave height was measured for each test condition. The results were suggested as the armor weight ratio of the rear side slope(armor rock) to the sea side slope (tetrapod) in relation to the relative crest height.

Validating Numerical Analysis Model Modeling Method by Polyhedral Rubble Mound Structure Arrays (다면체 사석배열 해안구조물에 대한 수치해석모델의 모델링 기법 검증)

  • Choi, Woong-Sik;Kim, Kee-Dong;Han, Tong-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.723-728
    • /
    • 2014
  • Hydraulic experiments are performed in order to verify the swash effect of seashore structures installed to prevent scouring. However, a great deal of investment and time are required for producing the test apparatus and seashore structure used to perform the hydraulic experiment. The swash effect can be predicted, however, by using a numerical model and validation can be done based on comparisons of the numerical model and hydraulic experiment analysis results, thereby saving the cost and time required for producing the test apparatus and seashore structure. Taking a polyhedral rubble mound structure as the subject, this study performed a comparative analysis of wave run-up and run-down height of the numerical model interpretative results and the hydraulic experiment results, and validated the interpretative simulation wave test modeling technique. The study also predicted the swash effect by using the numerical interpretation approach method, whereby the volume ratio and friction area of the rubble mound were varied for different results.

Estimation on the Wave Transmission and Stability/Function Characteristics of the Submerged Rubble-Mound Breakwater (수중 잠제구조물의 파랑 전달율과 안정성 및 기능성 평가)

  • KIM Yong Woo;YOON Han Sam;RYU Cheong Ro;SOHN Byung Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.5
    • /
    • pp.528-534
    • /
    • 2003
  • The 2-D hydraulic experimental results for the submerged rubble-mound structure, we have been concerned with the slability/function characteristics of the structures by the effects of wave force, scour/deposition at the toe and the wave transmission ratio at the lee-side sea. So, to investigate the variation characteristics of the wave transmission ratio which depended on a geometrical structure of the submerged breakwater profiles, the critical conditions for the depth of submergence and crest width were obviously presented. In summary, the results lead us to the conclusion that the wave control capabilities of submerged breakwaters by the variation of the submergence depth is higher than about 4 times the degree at the efficiency than the that of crest width. The destruction of the covering block at the crest generated at the region which was located between the maximum and minimum damage curve, and it's maximum damage/failure station from the toe of the structure was $0.2\;L_s.$ As the wave transmission coefficient and the slope of the structure increase, the damage/failure ratio and the maximum scour depth at the toe was extended, respectively. When the maximum scour depth happened, the destruction of the covering block which was located at the toe generated at the front of the submerged rubble-mound breakwater. Finally, it was found from the results that the optimization of the structure may be obtained by the efficient decision of the submergence depth and crest width in the permissible range of the wave transmission ratio.

Application of Dynamic Reliability Model to Analysis of Armor Stability of Rouble-Mound Breakwaters (경사제 피복재의 안정성 해석에 대한 동적 신뢰성 모형의 적용)

  • Kim, Sung-Ho;Lee, Cheol-Eung
    • Journal of Industrial Technology
    • /
    • v.24 no.A
    • /
    • pp.215-226
    • /
    • 2004
  • A dynamic reliability model which can take into account the time history of loading sequences may be applied to the analyses of the hydraulic stability of armor units on rubble-mound breakwaters. All the parameters related to the stability of structures have been considered to be constants in the deterministic model until now. Thus, it is impossible to study the effects of some uncertainties of the related random variables on the stability of structures. In this paper, the dynamic reliability model can be developed by POT(Peak Over Threshold) method in order to take into account the time history of loading sequences and to investigate the temporal behaviors of stability of structure with its loading history. Finally, it is confirmed that the results of dynamic reliability model agree with straight- forwardly those of AFDA(Approximate Full Distribution Approach) of the static reliability model for the same input conditions. In addition, the temporal behaviors of probability of failure can be studied by the dynamic reliability model developed to analyze the hydraulic stability of armor units on rubble-mound breakwaters. Therefore, the present results may be useful for the management of repair and maintenance over the whole life cycle of structure.

  • PDF

Hydraulic Experiments on Wave Transmission Coefficients for Rubble Mound Structure Armored with Tetrapods (TTP 피복 경사식 구조물의 전달파고계수 산정에 관한 수리실험)

  • Kim, Young-Taek;Lee, Jong-In
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.198-205
    • /
    • 2017
  • Two-dimensional hydraulic model experiments on rubble mound structure armoring with the tetrapods and the superstructure were conducted to investigate wave transmission characteristics under irregular wave conditions. The previous studies about the wave transmission coefficients dealt with the low crested structures, therefore the rock was the main armor units and the superstructure was not constructed. In this study, the new empirical design formula for the wave transmission coefficient about rubble mound structure with the tetrapods and the superstructure was suggested and the effects of wave steepness and the row of the tetrapods in front of the superstructure could be considered.