DOI QR코드

DOI QR Code

Validating Numerical Analysis Model Modeling Method by Polyhedral Rubble Mound Structure Arrays

다면체 사석배열 해안구조물에 대한 수치해석모델의 모델링 기법 검증

  • 최웅식 (연세대학교 토목환경공학과) ;
  • 김기동 (국립공주대학교 건설환경공학부) ;
  • 한동석 (연세대학교 토목환경공학과)
  • Received : 2013.08.14
  • Accepted : 2014.02.09
  • Published : 2014.06.01

Abstract

Hydraulic experiments are performed in order to verify the swash effect of seashore structures installed to prevent scouring. However, a great deal of investment and time are required for producing the test apparatus and seashore structure used to perform the hydraulic experiment. The swash effect can be predicted, however, by using a numerical model and validation can be done based on comparisons of the numerical model and hydraulic experiment analysis results, thereby saving the cost and time required for producing the test apparatus and seashore structure. Taking a polyhedral rubble mound structure as the subject, this study performed a comparative analysis of wave run-up and run-down height of the numerical model interpretative results and the hydraulic experiment results, and validated the interpretative simulation wave test modeling technique. The study also predicted the swash effect by using the numerical interpretation approach method, whereby the volume ratio and friction area of the rubble mound were varied for different results.

세굴방지를 위하여 설치하는 해안구조물의 쇄파효과를 검증하기 위하여 수리조파실험이 실시된다. 하지만 수리조파실험을 실시하기 위해서 사용되는 실험 장치와 해안구조물의 제작에 많은 비용과 시간이 소요된다. 수치해석모델과 수리조파실험의 해석결과를 비교하여 검증하면, 수치모델을 활용하여 쇄파효과를 예측할 수 있고 실험 장치와 해안구조물 제작에 소요되는 비용과 시간을 절약할 수 있다. 본 연구에서는 다면체 사석 구조물을 대상으로 수치해석결과와 수리조파실험 결과의 처오름 및 처내림 높이 비교분석을 수행하였고 해석적 모의 조파실험 모델링 기법을 검증하였다. 또한, 사용한 수치해석 접근 방법을 활용하여 사석의 부피비와 마찰면적을 변화시켜 쇄파효과를 예측하였다.

Keywords

References

  1. Janna, W. S. (1993). Introduction to fluid mechanics 3rd ed. eds. J. Plant, PWS Publishing Company, pp. 643-689.
  2. Kang, K. W., Kim, K. D. and Han, T. S. (2012). "Analytical performance comparison of scour protection of rubble mound structure shape using simulation." J. of the Korean Society of Civil Engineers, KSCE, Vol. 32, No. 2A, pp. 117-122.
  3. Kim, J. H. (2007). "Shock response analysis under underwater explosion for underwater ship using ALE technique." J. of the Korean Society for Marine Environmental Engineering, Vol. 10, No. 4, pp. 218-226.
  4. Kim, J. H. and Shin, H. C. (2008). "Application of the ALE technique for underwater explosion analysis of a submarine liquefied oxygen tank." Ocean Engineering, Vol. 35, pp. 812-822. https://doi.org/10.1016/j.oceaneng.2008.01.019
  5. Lee, S. H., Woo, J. H. and Cho, Y. S. (2005). "Run-up and overtopping of waves on slopes of rubble-mound breakwaters." J. of Korea Water Resources Association, KWRA, Vol. 11, No. 38, pp. 947-954. https://doi.org/10.3741/JKWRA.2005.38.11.947
  6. Otsuka, M., Matsui, Y., Murata, K., Kato, Y. and Itoh, S. (2011). "A study on shock wave propagation process in the smooth blasting technique." 8th International LS-DYNA Users Conference.
  7. Slavik, T. P. (2009). "A coupling of empirical explosive blast loads to ALE air domains in LS-DYNA." 7th European LS-DYNA Conference.
  8. Sumer, B. M. and Fredsoe, J. (1997). "Scour at the round head of a rubble-mound breakwater." Coastal Engineering, Vol. 29, pp. 231-262. https://doi.org/10.1016/S0378-3839(96)00025-7
  9. Sumer, B. M. and Fredsoe, J. (2000). "Experimental study of 2D scour and its protection at a rubble-mound breakwater." Coastal Engineering, Vol. 40, pp. 59-87. https://doi.org/10.1016/S0378-3839(00)00006-5