• 제목/요약/키워드: rubber suspension

검색결과 73건 처리시간 0.028초

철도차량 고무 현가부품의 내한성 시험기준연구 (A Study on the Test Standards at Low Temperature of Rubber Suspension Components of Railway Vehicle)

  • 윤태호;장승호;최병일;이찬우;나희승
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.372-376
    • /
    • 2004
  • In this paper, the standard test methods at low temperature of rubber suspension components of railway vehicle are investigated and reviewed. In order to connect the TKR(Trans-Korean Railway)-TSR(Trans-Siberian Railway), it is necessary to evaluate the performance of rubber suspenion components of railway vehicle. In the current Korean Standard, the test method at low temperature of railway vehilce components and the test method of rubber bellows of air spring are specified. But, the specified test temperature is higher than the the operating temperature of TSR railway. So, the in-depth research for the test method and performance evaluation technique of rubber suspension component at low temperature is necessary and current KS code should be adjusted.

  • PDF

혼합물 실험계획법을 활용한 고무 교질 현탁액 제조 공정의 최적화 (Optimization of a Rubber based Colloidal Suspension Manufacturing Process Using Mixture Experimental Design)

  • 유인곤;안성재;유성명;홍성훈;이민구
    • 품질경영학회지
    • /
    • 제52권2호
    • /
    • pp.377-394
    • /
    • 2024
  • Purpose: To derive the optimal conditions for the Rubber based colloidal suspension manufacturing process, which made using a stirrer, to apply the mixture design method. Methods: We used two process component and one process variable Mixture design to derive the optimal conditions for the process. The response variables were selected for rotational viscometer measures which can represent Rubber based colloidal suspension quality. The input variables were selected as the values of rubber-organic solvent expressed in proportions as process components and stirring amount as a process variable which are controllable factors in the process. Results: Based on the results of the experiment, rubber and organic solvent and the interaction between stirring amount and rubber and the interaction between stirring amount and rubber and organic solvent were significant. Reproducibility of the regression model was confirmed by the observation that the values obtained from the reproducibility experiment fell within the confidence interval. Additionally, the model predictions were found to be in close agreement with the field measurements. Conclusion: In this study, a regression model was developed to predict the viscosity change of colloidal suspensions based on the proportion of rubber based colloidal suspension. The developed regression model can lead to improved product quality.

극한 온도에서의 철도차량용 현가부품의 특성연구 (A Study on the Characteristics of the Suspension Components of Rolling Stocks in the Very low Temperature)

  • 최병일;나희승;장승호
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.45-48
    • /
    • 2004
  • This study is a preview of characteristics of (1st/2nd) rubber suspension parts in low temperature, it will be researched before Trans Korean Railway and continental railway network connection. Rubber material characteristics are different to steel materials. Behavior of rubber material shows large deformation in hyper-elastic region. Moreover, added dashpot and low temperature condition shows various non-linear characteristics.

  • PDF

전기 자동차용 경량화 서스펜션 모듈 개발 (Lightweight Suspension Module Development for Electric Vehicle)

  • 정윤식;신헌섭;임성수;최진환
    • 대한기계학회논문집A
    • /
    • 제37권8호
    • /
    • pp.1015-1019
    • /
    • 2013
  • 현재 전기자동차의 높은 에너지 효율 및 승차감을 모두 만족시키기 위해 경량 서스펜션 개발에 많은 초점이 맞추어 지고 있다. 개발되고 있는 경량 서스펜션중 rubber tube로 만들어진 에어서스펜션이 에너지효율 및 승차감을 만족시킨다고 평가 받고 있다. 본 논문에서는 높은 전장비의 특징을 가지는 전기자동차용 에어서스펜션을 개발하였다. 또한 실제 에어서스펜션의 성능 향상 연구를 위해 유연 다물체 동역학 모델(MFBD) 방법을 이용하여 모델링하였고, 에어서스펜션에서 중요한 역할을 하는 rubber tube의 경우는 FE기법을 통해 모델링 하였다. 에어서스펜션의 각 모듈 특성을 고려하여 모듈별 물성실험을 진행 및 물성치를 추정하였다. MFBD모델의 신뢰성 확인을 위해 물성치를 적용시킨 시뮬레이션 결과와 실제 실험결과를 비교하였다.

철도차량용 코니컬 고무스프링 특성 분석 연구 (Analysis on The Properties of Conical Rubber Spring for Railway Rolling-stock)

  • 허현무;유원희;박태원
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 춘계학술대회 논문집
    • /
    • pp.1578-1583
    • /
    • 2007
  • The suspension system of railway rolling-stock is composed of the primary and secondary suspension elements. Recently, a conical rubber spring is widely used as the primary suspension element due to the merits of the three directional stiffness characteristics. So, understanding the properties and characteristics of the conical rubber spring is very important from the viewpoint of vehicle stability and efficient maintenance. Thus, this study is started to acquire the basic data for maintaining spring elements efficiently. For this, we tested the conical rubber spring samples including a new and old specimen with aging. As a test result, we have obtained the property characteristics of the aged spring comparing with the new product and we describe the results.

  • PDF

세브론 스프링의 강성 변화에 따른 철도차량의 동특성 예측 연구 (Prediction of Dynamic Characteristics of Railway Vehicle by Stiffness Variation of Chevron Rubber Spring)

  • 유원희;박준혁;박남철;구정서
    • 한국소음진동공학회논문집
    • /
    • 제27권2호
    • /
    • pp.162-167
    • /
    • 2017
  • The chevron rubber spring is used for subway vehicle as a primary suspension. Generally, the primary suspension has an influence to the running performance and not so much effect on the ride comfort in railway vehicle. But the stiffness of chevron spring is harder and harder as time goes on because of rubber characteristics. Therefore the dynamic characteristics such as ride comfort and derailment coefficient should be reviewed according to the stiffness variation of chevron rubber spring. In this paper the effect of chevron rubber spring on dynamic characteristics was studied by considering multi-body dynamics of railway vehicle on one straight line and seven curved lines.

도시철도차량 세브론 고무 특성 변화가 진동승차감 레벨에 미치는 영향 연구 (A Study on the Effect of Changes in Chevron Rubber Characteristics on the Vibrational Ride Comfort Level of a Subway Vehicle)

  • 박남철;구정서
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.57-65
    • /
    • 2016
  • The suspension system of a subway vehicle is composed of $1^{st}$ and $2^{nd}$ springs. The suspension system is the most important parameter in determining the vibration ride comfort. If the $1^{st}$ suspension spring is designed as a spring with strong stiffness to improve the running stability at high speed, it causes vehicle vibrations. In this paper, by testing and analyzing changes of the characteristics of Chevron springs, which have been the primary suspension springs used for about 20 years, we study how changing the characteristics affects vehicle acceleration and ride comfort. The lateral and longitudinal vibrational ride comfort index levels were lower than the vertical ones. Therefore, as increasing the stiffness of Chevron springs has the greatest effect on the vertical vibrational ride comfort index level, a countermeasure for vertical vibration reduction is needed when the stiffness increases owing to aging. Finally, maintenance guidelines, including the replacement time for the Chevron rubber, were proposed based on these findings.

고무 부싱의 주파수 의존 복소 강성을 고려한 차량 현가 장치에서의 전달력 분석 (Consideration of Frequency Dependent Complex Stiffness of Rubber Busings in Transmission Force Analysis of a Vehicle Suspension System)

  • 이준화;김광준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 1998년도 춘계학술대회논문집; 용평리조트 타워콘도, 21-22 May 1998
    • /
    • pp.34-39
    • /
    • 1998
  • In order to compute the forces which are transmitted through rubber bushings with a commercial multibody dynamic analysis (MBDA) program, a rubber bushing model is needed. The rubber bushing model of MBDA programs such as DADS or ADAMS is the Voigt model which is simply a parallel spring-viscous damper system, meaning that the damping force of the Voigt model is proportional to the frequency. However, experiments do not necessarily support this proportionality. Alternatively, the viscoelastic characteristics of rubber bushings can be better represented by the complex stiffness. The purpose of this paper is to develop a viscoelastic rubber bushing model for the MBDA programs. Firstly, a methodology is proposed to calculate the complex stiffness of rubber bushings considering static and dynamic load conditions. Secondly, a viscoelastic rubber bushing model developed which uses standard elements provided by DADS. The proposed methods are applied to the rubber bushings of the lower control arms of a rear suspension of a 1994 Ford Taurus model. Then, the forces computed for the rubber bushing model are analyzed and compared with the Voigt model in time and frequency domains.

  • PDF

FEM에 의한 자동차부품용 고무커버에 관한 해석 (FEM Analysis of Rubber Cover for Automotive Parts)

  • 김상우;김인관;강태호;김영수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.778-781
    • /
    • 2002
  • Durability of rubber dust cover in the ball joint for automotive suspension parts were analyzed by FEM and compared with experimental data. Upper open area of ball joint is sealed by dust cover for preventing outflow of the lubricating oil and intrusion of send, dust, water, etc. This rubber cover undergoes repeated loadings such as tension and compression while the car is running. Analysis about rubber material needs to consider every kinds of nonlinearities arise in finite element analysis, which are geometric nonlinearity due to large displacement and small strain, materially nonlinearity and nonlinear boundary condition such as contact. So in the study, the deformation behavior of dust cover was analysed by using the commercial finite element program MARC. This program could solve these kinds of nonlinear analysis accurately. Finite element model of dust cover is considered as 3-dimensional half model based on 2-dimensional axisymmetric model. Material property of rubber was modeled by Ogden model and input data for calculation takes form uniaxial tension test of rubber specimen, The final object of the study is obtaining the design specification of dust covers and the result of analysis should be a useful data to design of rubber

  • PDF

자동차용 고무 Dust Cover의 거동에 관한 연구 (An Analysis of Rubber Dust-Cover for Automotive Parts)

  • 강태호;김인관;김영수
    • 한국CDE학회논문집
    • /
    • 제10권5호
    • /
    • pp.375-379
    • /
    • 2005
  • Durability of rubber dust cover in the ball joint for automotive suspension parts is analyzed by FEM and compared with experimental data. Upper open area of ball joint is sealed by dust cover for preventing outflow of the lubricating oil and intrusion of send, dust, water, etc. This rubber cover undergoes repeated loadings such as tension and compression while the car is running. Analysis about rubber material needs to consider every kinds of nonlinearities arise in finite element analysis, which are geometric nonlinearity due to large displacement and small strain, materially nonlinearity and nonlinear boundary condition such as contact. The deformation behavior of dust cover is analysed by using the commercial finite element program MARC. In the study, this program could solve these kinds of nonlinear analysis accurately. Finite element model of dust cover is considered as 3-dimensional half model based on 2-dimensional axisymmetric model. Material property of rubber is modeled by Ogden model and input data for calculation takes form uniaxial tension test of rubber specimen. The final object of the study is obtaining the design specification of dust covers and the result of analysis should be a useful data to design of rubber cover.