• Title/Summary/Keyword: rubber latex

Search Result 93, Processing Time 0.022 seconds

Improving Light Stability of Natural Rubber Latex Foam

  • Shim, Chang Su;Oh, Jeong Seok;Hong, Chang Kook
    • Elastomers and Composites
    • /
    • v.50 no.2
    • /
    • pp.81-86
    • /
    • 2015
  • In this study, natural rubber latex foam was prepared in order to replace commercialized polyurethane foams as a car seat material. Physical properties of the latex foam were investigated and the light stability was improved. The latex foam was mixed in an aqueous solution state, and the degree of foaming and the accelerator ratios were appropriately controlled. Tensile properties, hysteresis and dynamic mechanical properties of the latex foam were measured to compare with those of polyurethane foams. UV light absorbers and radical scavengers were added for improving light stability of the latex foam. Xenon lamp test was conducted to investigate the effects of the reagents on light stability. Our results revealed that the prepared latex foam including a light absorber with an antioxidant showed excellent light stable performances.

Microstructure of Cured Urea-Formaldehyde Resins Modified by Rubber Latex Emulsion after Hydrolytic Degradation

  • Nuryawan, Arif;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.5
    • /
    • pp.605-614
    • /
    • 2014
  • This study investigated microstructural changes of cured urea-formaldehyde (UF) resins mixed with aqueous rubber latex emulsion after intentional acid etching. Transmission electron microscopy (TEM) was used in order to better understand a hydrolytic degradation process of cured UF resins responsible for the formaldehyde emission from wood-based composite panels. A liquid UF resin with a formaldehyde to urea (F/U) molar ratio 1.0 was mixed with a rubber latex emulsion at three different mixing mass ratios (UF resin to latex = 30:70, 50:50, and 70:30). The rate of curing of the liquid modified UF resins decreased with an increase of the rubber latex proportion as determined by differential scanning calorimetry (DSC) measurement. Ultrathin sections of modified and cured UF resin films were exposed to hydrochloric acid etching in order to mimic a certain hydrolytic degradation. TEM observation showed spherical particles and various cavities in the cured UF resins after the acid etching, indicating that the acid etching had hydrolytically degraded some part of the cured UF resin by acid hydrolysis, also showing spherical particles of cured UF resin dispersed in the latex matrix. These results suggested that spherical structures of cured UF resin might play an important role in hindering the hydrolysis degradation of cured UF resin.

Adhesion Properties of Rubber and Kevlar modified with Resorcinol-formaldehyde resin and Rubber Latex (Resorcinol-formaldehyde resin와 고무 latex에 의해 표면 개질된 Kevlar 섬유의 고무 접착 특성)

  • Lee, Soo;Ko, Young-Duk
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 2007
  • Kevlar was chemically surface modified with resorcinol-formaldehyde(RF) prepolymer and VP rubber latex for application to high strength tirecords. RF prepolymer was easily obtained by polymerization at room temperature in the presence of a base catalyst. The mechanical and thermal properties of Kevlar were not significantly changed during surface treated under various conditions. The change of adhesion with rubber were investigated through H-test method. Maximum increase of adhesion force between rubber and Kevlar was obtained up to 40% than that of untreated one when the fiber was soaked in RFL dipping solution and thermally treated at $170^{\circ}C$ for 3 - 5min.

Latex Allergy (라텍스 알레르기(Latex Allergy))

  • Hwang, Ji-In
    • The Korean Nurse
    • /
    • v.37 no.2
    • /
    • pp.87-92
    • /
    • 1998
  • Immdeiate hypersensitivity reactions to natural rubber and latex products pose a significant threat to patients, healthcare workers, and the general population. The purpose of this study is to summarize the clinical syomptoms of latex rubber allergy and provide guidelines for the management of latex allergy. Contact dermatitis from the nearly constant use of latex gloves during the workday has become a real problem for many health care professionals. Moreover, the patient who come in contact with these gloves or with other latex-containing equipment may show reactons. Far worse than skin problems is life-threatening anaphyaxis, which can be the first indication that a person has latex sensitivity. In conclusion, nurses shold know the latex precautions such as risk factors, adverse reactons to latex, emergent treatment and so on.

  • PDF

Preparation and Characterization of Rubber/Clay Nanocomposite Using Skim Natural Rubber Latex (스킴천연고무 라텍스를 이용한 고무/점토 나노복합체의 제조 및 특성)

  • Alex, R.;Kim, M.J.;Lee, Y.S.;Nah, C.
    • Elastomers and Composites
    • /
    • v.41 no.4
    • /
    • pp.252-259
    • /
    • 2006
  • A new route for making rubber/clay nanocomposites was suggested based on skim natural rubber latex (SNRL), which is a protein rich by-product obtained during the centrifugal concentration of natural rubber (NR) latex. NR/acrylonitrile butadiene rubber (NBR) based nanocomposites were prepared from SNRL and NBR latex of 26 % acrylonitrile content by blending of aqueous dispersion of organoclay (OC) followed by coagulation, drying, mill mixing and vulcanization. X-ray diffraction(XRD) studies revealed that NR/NBR blend nanocomposites exhibited a highly intercalated and exfoliated structure, especially for NBR-rich blends. Dynamic mechanical studies showed that more compatible behavior was observed for NBR-rich blends. The 25/75 NR/NBR blend nanocomposite showed the best mechanical properties.

Graft Copolymerization of Poly(Methyl Methacrylate) onto Natural Rubber Latex (천연고무 Latex에 Poly(Methyl Methacrylate)의 그라프트 공중합)

  • Kim, K.S.;Shin, M.H.;Choi, S.K.;Keum, K.M.
    • Elastomers and Composites
    • /
    • v.28 no.3
    • /
    • pp.191-197
    • /
    • 1993
  • The graft copolymerization of methyl methacrylate(MMA) onto natural rubber latex(NRL) initiated by t-butyl hydroperoxide(t-BHPO) was investigated in aquous medium. The grafting percentage, grafting efficiency and total conversion were observed in various reaction conditions such as monomer, initiator and emulsifier concentration, reaction temperature, reaction time and agitation speed. The optimum conditions for the graft copolymerization onto natural rubber latex were as follows ; At given monomer concentration of $3{\times}10^{-2}mole/l$, the maximum grafting percentage was appeared in the case of grading in initiator concentration of $4{\times}10^{-2}mo1e/l$ and emulsifier concentration of 0.2wt.% at $40^{\circ}C$ for 5hrs.

  • PDF

Preparation of NR/MG Latex Blend Films and its Mechanical Properties (NR/MG Latex 블랜드필름의 제조 및 그의 기계적특성)

  • Kim, K.S.;Park, J.H.;Eum, J.S.;Kim, S.J.
    • Elastomers and Composites
    • /
    • v.29 no.1
    • /
    • pp.9-17
    • /
    • 1994
  • Methylmetharylate grafted latex(MGL) was prepared by emulsion graft copolymerization of methyl methacrylate onto natural rubber latex(NRL) by using t-butyl hydroperoxide and tetraethylene pentamine in an aqueous medium. Blending of MGL and NRL with different mixing ratio carried out and viscosity and particle size distribution of blend latex were determined. It was found that the optimum condition of mature time, vulcanizing temperature and time for preparation of blend latex films were investigated. latex films prepared by dipping process were meaured. As the reuslt, blend latex(NR-d-MG) films obtained from two-dipping system were more excellent than NR and MG film obtained from one-dipping system.

  • PDF

Preparation and Properties of Insulating Rubber Gloves for Safety Protection (안전보호용 절연 고무장갑의 제조 및 특성)

  • Kim, Kong-Soo;Cho, Suk-Hyung;Kim, Sang-Ki
    • Elastomers and Composites
    • /
    • v.36 no.4
    • /
    • pp.262-267
    • /
    • 2001
  • Insulating rubber gloves with antibacterial and withstand voltage properties were prepared by blending the natural rubber latex(NRL), waterborne polyurethane(PU) and 4N-chitosan. Tensile strength of rubber glove increased with increasing amount of PU, and elongation decreased. The property of withstand voltage of rubber gloves improved with increasing leaching time, and the rubber gloves showed insulating capability of 10000V at leaching time of 3 hours. Little bacteria existed after 4N-chitosan was added to rubber gloves.

  • PDF

Modified Silica with Cellulose/Starch by Gel-Adsorption Method as Reinforcing Materials for SBR Latex

  • Li, Xiang Xu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • v.53 no.1
    • /
    • pp.6-12
    • /
    • 2018
  • Styrene-butadiene Rubber (SBR) Latex composites, incorporated with cellulose/starch-silica hybrids synthesized by gel-adsorption method, were filled into rubber by the latex compounding method. The structure morphology, mechanical properties, and thermodynamic properties of gel-silica hybrids were characterized. The states of hybrids which used as fillers were also characterized by SEM. As the fillers ratio increased, the difference for storage modulus of samples had been morphology by rubber process analyzer (RPA). Then, as more fillers ratio was filled into the matrix, the best tensile strength result, and the largest modulus value were also proved by UTM and RPA. As for thermal stability, increase in the ratio of fillers led to higher initial decomposition temperature, which was also proved by TGA. The swelling ratio of samples has also been characterized. From the results of all the tests, cellulose-silica hybrid showed the best results as a filler, and the best filling ratio of this hybrid is about 10 phr, which has the best storage modulus and great tensile strength.

Improvement of Abrasion and Debris on Styrene-Butadiene-Styrene Block Copolymer with Carboxylated SBR Latex and Zinc Oxide (카르복실화 SBR 라텍스와 산화아연을 이용한 SBS의 내마모성과 데브리스(debris) 개선 연구)

  • Lee, Jin Hyok;Bae, Jong Woo;Kim, Jung Su;Yoon, Yoo-Mi;Jo, Nam-Ju
    • Elastomers and Composites
    • /
    • v.48 no.3
    • /
    • pp.225-231
    • /
    • 2013
  • In this study, we observed the effect of carboxylated SBR latex and zinc oxide on styrene-butadiene-styrene( SBS) composites for improving abrasion and debris. SBS composite, which added only silica, showed poor mechanical properties, NBS abrasion, and debris, caused by strong filler-filler interaction of silica. In case of adding carboxylated SBR latex, mechanical properties, NBS abrasion and debris of SBS composite were improved. Because of carboxyl group of carboxylated SBR latex interacted with silanol group of silica. Both carboxylated SBR latex and zinc oxide were added, SBS composite showed highest mechanical properties, NBS abrasion, and debris by forming ion cluster between carboxylated SBR latex and zinc oxide. By FT-IR analysis, ion clusters were confirmed that observed zinc carboxylated group stretch peak at $1550{\sim}1650cm^{-1}$ range. SBS composite, SC-4, showed excellent mechanical properties ; tensile strength $156kgf/cm^2$, elongation 936%, tear strength 59.4kgf/cm ; and excellent abrasion characteristics ; NBS abrasion 338%. Also, debris of SC-4 was minimized and showed wave-shape in fracture surface.