• Title/Summary/Keyword: rubber friction coefficient

Search Result 72, Processing Time 0.029 seconds

A Study on the Clamping Force of an Automotive Air-conditioning Hose according to the Friction Coefficient (마찰계수를 고려한 자동차용 에어컨 호스의 체결력에 관한 연구)

  • Baek, Jae-Kwon;Kim, Byung-Tak
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.39-46
    • /
    • 2011
  • The automotive air conditioning hose is used for connecting the components of air conditioner in a vehicle. The hose is usually manufactured by the swaging process to connect the rubber hose with the metal fitting at the end of the hose. In case that the clamping force is small, the refrigerant gas in the hose can leak locally under the severe operating circumstances. The practical test of clamping force is performed by means of the measurement of separation force. In this study, the swaging process of a hose is simulated with the finite element method, to investigate the effect of friction coefficient on the clamping force. The contact condition is used in consideration of real manufacturing process, and the material properties for the Mooney-Rivlin model is obtained by the experimental results. The result interpretations are focused on the contact forces, which is displayed graphically with respect to friction coefficient, on the surfaces between the hose and the metal fittings.

An Evaluation of Critical Speed for Draft Gear using Variable Formation EMU (도시철도차량의 가변편성을 고려한 고무완충기의 임계속도 평가)

  • Cho, Jeong Gil;Kim, Y.W.;Han, J.H.;Choi, J.K.;Seo, K.S.;Koo, J.S.
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.5
    • /
    • pp.139-143
    • /
    • 2019
  • In this study, we tried to derive the most severe scenario and its critical speed by 1-D collision simulation with a variable formation vehicle in order to prepare for the change of demand in Seoul Metropolitan Subway Line 3, which is operated by fixed arrangement. After establishing various collision scenario conditions, the friction coefficient between the wheel and the rail was evaluated as 0.3, which is considered to be severe. As a result of analysis according to all scenarios, the most severe scenario conditions were confirmed by comparing rubber shock absorber performance and vehicle collision deceleration. In addition, a typical wheel-rail friction coefficient was derived through accident cases, and the analysis was performed again and compared. Finally, the criterion of the critical speed in the condition of the friction coefficient of the normal wheel - rail condition was confirmed.

Synthesis and Tribological Behavior of Nanocomposite Polymer Layers

  • Tsukruk, V.V.;Ahn, Hyo-Sok;Julthongpiput, D.;Kim, Doo-In
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.51-52
    • /
    • 2002
  • We report results on microtribological studies of chemically grafted nanoscale polymer layers of different architecture with thickness below 30 nm. We have fabricated the molecular lubrication coatings from elastomeric tri-block copolymers and tested two different designs of corresponding nanocomposite coatings. We observed a significant reduction of friction forces and an increase of the wear stability when a minute amount of oil was trapped within the grafted polymer layer. These polymer gel layers exhibited a very steady friction response and a small value of the coefficient of friction as compared to the initial polymer coating. A polymer 'triplex' coating has been formed by a multiple grafting technique. The unique design of this layer Includes a hard-soft-hard architecture with a compliant rubber interlayer mediating localized stresses transferred through the topmost hard layer. This architecture provides a non-linear mechanical response under a normal compression stress and allows additional dissipation of mechanical energy via the elastic rubber interlayer.

  • PDF

Surface Modification of Aluminum by Nitrogen ion Implantation (질소이온주입에 의한 알루미늄의 표면개질특성)

  • Kang Hyuk Jin;Ahn Sung Hoon;Lee Jae-Sang;Lee Jae Hyung;Kim Kyong Gun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.124-130
    • /
    • 2005
  • The research on surface modification technology has been advanced to improve the properties of engineering materials. ion implantation is a novel surface modification technology to enhance the mechanical, chemical and electrical properties of substrate's surface using accelerated ions. In this research, nitrogen ions were implanted into aluminum substrates which would be used for mold of rubber materials. The composition of nitrogen ion implanted aluminum alloy and nitrogen ion distribution profile were analyzed by Auger Electron Spectroscopy (AES). To analyze the modified surface, properties such as hardness, friction coefficient, wear resistance, contact angle, and surface roughness were measured. Hardness of ion implanted specimens was higher than that of untreated specimens. Friction coefficient was reduced, and wear resistance was improved. From the experimental results, it can be expected that ion implantation of nitrogen enhances the surface properties of aluminum mold.

Wear Behavior of C/B filled NR Compounds using a Blade-type Abrader (칼날형 마모시험기를 이용한 C/B충전 NR 배합고무의 마모거동)

  • Youn, J.H.;Kaang, Shinyoung
    • Elastomers and Composites
    • /
    • v.49 no.1
    • /
    • pp.73-81
    • /
    • 2014
  • Friction and wear behaviors of natural rubber(NR) compounds were investigated using a blade-type abrader. The effects of temperature, normal load, and rotation speed on wear rate were studied, and wear behaviors of deteriorated compounds were also evaluated. As the rotation speed of specimen and the normal load to specimen increased, the wear rate increased. However, as the experimental temperature increased, the frictional coefficient decreased and the wear rate decreased accordingly. It was found from the wear studies that a power-law relation works between the frictional work input and the wear rate. It was observed that the wear rate dramatically increased by the degradation of the rubber specimen. The wear pattern was developed and the bigger ridge space of the pattern was observed usually in the higher normal load applied. In determining the wear rate of rubber compound, the continuous measurements of wear distance using the blade-type abrader could be successfully used instead of intermittent measurements of wear-loss weight.

Response Control of Structure by Frictional Base Isolation System : Rigid-Mass Model (마찰지진격리장치와 구조물의 응답제어: 강체질량모델에서의 적용)

  • 김재관;이원주;김영중;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.426-431
    • /
    • 2001
  • Seismic performance of base isolated rigid-mass model were studied through shaking table tests. Friction pendulum systems (FPS), pure-friction systems with laminated rubber bearing (LRB) were selected for the comparison of performance. Performance of specially designed isolation systems were tested statically using actuator and dynamically using shaking table. Numerical methods were developed to simulate the nonlinear behavior of the frictional base isolation systems. Two models were considered. one is modified Bouc-Wen model considering breakaway coefficient of friction and the other is classical Coulomb model. The results of numerical methods are found to be in very good agreement with test results.

  • PDF

A Study on Complement of the Design and Analysis Procedures of Friction Pendulum System (마찰진자형 면진받침의 설계 및 해석절차 보완에 관한 연구)

  • Kim, Hyun-Uk;Joo, Kwang-Ho;Noh, Sang-Hoon;Song, Jong-Keol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.1
    • /
    • pp.488-494
    • /
    • 2014
  • Although friction pendulum system has various advantages it is difficult to estimate the behavior because of velocity, bearing pressure, and temperature dependent characteristics of coefficient of friction. This research focuses on evaluating the conservatism of each method used and the effects of bearing pressure on the behavior of the system by conducting comprehensive examination on design and analytic procedure of friction pendulum system, as is proposed in standard, code and literature. In addition, this study provides comparative analysis on general behavior characteristics of friction pendulum system by comparing the result with that of the analysis on lead rubber bearing which possesses the same dynamic properties.

Performances of Plastic Pulley with High Mechanical Properties and Low Friction

  • Kim, Namil;Lee, Jung-Seok;Hwang, Byung-Kook;Bae, Seokhu;Yoon, Jeong-Hwan;Yun, Juho
    • Elastomers and Composites
    • /
    • v.54 no.2
    • /
    • pp.135-141
    • /
    • 2019
  • Polyphenylene sulfide (PPS) was filled with glass fiber (GF), aramid fiber (AF), and solid lubricants to improve the mechanical properties and wear resistance. The addition of GF effectively enhanced the tensile strength, flexural modulus, and impact strength of PPS, while solid lubricants such as polytetrafluoroethylene (PTFE), molybdenum disulfide ($MoS_2$), and tungsten disulfide ($WS_2$) lowered the friction coefficients of the composites to below 0.3. The ball nut and motor pulley of the electric power steering (EPS) were manufactured using the PPS composites, and feasibility was ascertained thereafter by conducting the durability test. The composites filled with GF and AF showed high mechanical strength, but slip occurred at the interface between the pulley and belt while testing above $50^{\circ}C$. When small amounts of lubricants were added, the slip was no longer detected because of the suppression of friction heat. It is realized that the low friction as well as high mechanical properties is important to ensure the reliability of plastic pulleys.

The Development of Outsole for Wet Traction Enhancement (습윤 접지력 향상을 위한 안전화 겉창 개발 연구)

  • Kim, Jung Soo
    • Journal of the Korean Society of Safety
    • /
    • v.28 no.3
    • /
    • pp.33-38
    • /
    • 2013
  • Many occupational workers or professionals have to walk on the various floors for a long period of time. The objective of this study was to develop the safety shoes with increased traction through the material selection. In order to fulfill our objective, first, two kinds of filler were selected to compare the wear mechanism at outsole surface. The developed rubber materials were tested with two kinds of portable slip meters. The sample safety shoes with developed rubber materials were also tested with subject in the laboratory. During walking, the safety shoes were naturally abraded with counter surface. The coefficient of friction(COF) was gradually decreased with number of steps to 30,000, while the COF was abruptly increased from 30,000 to 40,000. The experimental results showed that COF tested with silica rubber was at least 10% higher than that with carbon black rubber in wet or detergent condition. It has been well recognized that filler properties play a important role in wet traction in the tire industry. However it has been unclear that filler properties would be decisive factor in safety shoes. Our study shows that silica exhibits a higher slip resistance than carbon black without reference to wear states in wet or detergent condition. So, this results will provide guides for outsole compounders to develop new products and improve product performance.

The Surface Properties of Blend Film of Natural Rubber and Graft Latex by Dipping Process (Dipping법에 의한 천연고무와 그라프트 라텍스 블렌드 필름의 표면특성)

  • Kim, Kong-Soo;Park, Jun-Ha;Eum, Ju-Song
    • Applied Chemistry for Engineering
    • /
    • v.5 no.6
    • /
    • pp.990-997
    • /
    • 1994
  • The vulcanized NR and blend films were prepared with mixing of natural rubber latex (NRL) and methyl methacrylated grafted latex(MGL) with various additives by dipping process. It was investigated the basic properties of vulcanized NR films that is optimum condition of the mature time, swelling degree, cure time at $110^{\circ}C$, and measured the mechanical properties of tensile strength and elongation of its condition. In order to identify the surface structure and the slip properties of blend films contact angles and static and kinetic friction coefficient were measured. Contact angles were decreased with increment of blend ratio of MGL, and static and kinetic friction coefficient were decreased rapidly for the NR/MG and NR-d-MG films than for the NR films. From the results, NR/MG and NR-d-MG films has slip's reinforcement in skin contact surface with increased of blend ratio of MGL.

  • PDF