• 제목/요약/키워드: rubber bearing

검색결과 292건 처리시간 0.026초

비선형 유한요소법을 이용한 헬리콥터 로터허브용 탄성체베어링 설계 (Design of an Elastomeric Bearing for a Helicopter Rotor Hub by Non-linear Finite Element Method)

  • 김현덕;류시융;박정선
    • 한국항공우주학회지
    • /
    • 제38권6호
    • /
    • pp.612-619
    • /
    • 2010
  • 본 연구에서는 비선형 유한요소법을 사용하여 헬리콥터용 구형 탄성체베어링을 설계하였다. 탄성체베어링은 헬리콥터 로터허브의 주요부품으로 로터블레이드의 플래핑운동, 래그운동, 피치운동의 힌지 역할을 한다. 탄성체베어링은 고무판과 금속판으로 구성된다. 탄성체 베어링은 고무의 탄성변형을 이용하여 힌지 역할을 하기 때문에 강성설계가 중요하다. 따라서 탄성체베어링은 로터허브 베어링의 강성요구 조건을 만족하도록 설계되어야한다. 본 연구에서는 구형의 탄성체베어링의 효율적인 설계를 위하여 유한요소모델 생성 알고리즘을 개발하고, 단일 고무판의 강성 특성을 분석을 수행하였다. 끝으로, 본 연구에서 설계한 탄성체베어링의 헬리콥터 로터허브용으로 적합한지 검증하였다.

원전기기의 면진을 위한 진동대 실험 I : 고무베어링 (A Shaking Table Test for Equipment Isolation in the NPP (I): Rubber Bearing)

  • 김민규;전영선;최인길
    • 한국지진공학회논문집
    • /
    • 제8권5호통권39호
    • /
    • pp.65-77
    • /
    • 2004
  • 본 연구에서는 원전기기의 내진안전성을 향상시키기 위한 진동대 실험을 수행하였다. 원전 격납건물과 유사한 진동수 특성을 가지는 구조물을 제작하여 실험에 사용하였으며 구조물 내부에 설치된 기기를 모사 하기 위하여 면진장치가 설치된 강체블럭을 층바닥에 설치하였다. 주파수 특성이 상이한 3종류의 지진파를 이용하여 진동대 실험을 수행하였다. 면진장치로는 천연고무베어링(NRB)과 고감쇠고무베어링(HDRB)을 사용하여 고무의 감쇠특성에 따른 면진기기의 효율성을 분석하였다. 또한 입력지진동의 주파수 특성에 따라 적절한 면진장치의 기기면진효과를 평가하였다. 실험결과 적절한 면진장치를 사용함으로써 기기의 지진응답을 크게 줄일 수 있으며 지진에 대한 안전성을 향상키킬 수 있는 것으로 나타났다.

휠 베어링용 밀봉 시일 설계를 위한 시일 립의 밀착력 예측 (Prediction of the Reaction Force for Seal Lip Design with Wheel Bearing Unit)

  • 김기훈;유영면;임종순;이상훈
    • 한국자동차공학회논문집
    • /
    • 제9권5호
    • /
    • pp.165-172
    • /
    • 2001
  • Wheel bearing units were almost exclusively used for car front wheel, where the two ball rows are directly side by side with integrated rubber seal. The seal is of important for wheel bearing units due to the adverse environmental conditions with mud and splash water. The seal of wheel bearing units was designed to have geometry with multi lips, which elastic lip contacts and deforms with bearing. The equation of reaction force for deformed lip as cantilever beam was previously used for seal lip design. But it's result was not useful because deflection of the beam differs from lip's. In this study, deformed shape of the lip was assumed to and order function which is more similar to lip deformation and made the equation for reaction force prediction. The Reaction forces from each other equations were compared with results by FEA to prove usefulness of new equation.

  • PDF

총형공구를 이용한 고정밀 베어링 Rubber seal 금형가공에 관한 연구 (A Study on Mold Machining for Bearing Rubber Seal by Formed Tool.)

  • 김도형;김연술;이희관;노상흡;양균의
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.1807-1810
    • /
    • 2003
  • The formed tool is used to machine the unique shape of rubber seal for geometrical shaping and reduction of cutting time. The bearing rubber seal produced by hot press forming has complex geometry for the complex geometrical shape to prevent leakage of lubricant oil and influx of the dust effectively. Because it is difficult to machine the unique shape exactly by the conventional tool, the formed tool is used in machining mold of the seal. In this paper, It is performed for selection of the formed tool to investigate cutting edge wear, cutting force, and surface quality. Also, an efficient high precision machining is proposed on the experiment data.

  • PDF

탄성체 적층 납삽입 제진장치의 설계 및 특성시험 (An Experimental Study and the Design of the Rubber Laminated Lead Damper)

  • 이완하;박진영;박정우;김기만;박건록
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.165-170
    • /
    • 2011
  • A large number of seismic isolation systems have been developed since the early 1970s. They are basically a combination of elastomeric bearing and energy dissipators. The investigation described in this paper analyzes shear property and the frequency dependence of Lead Rubber Damper(LRD). Lead Rubber Damper is similar in shape and performance property to Lead Rubber Bearing. Experimental condition ranges from 20 to 200% in share strain and from 0.1 to 1.0Hz in frequency. When the shear strain is increased, effective stiffness and damping ratio are decreased. When the frequency is increased, change of the behavior characteristic is subtle.

  • PDF

Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression

  • Sabetifar, Hassan;Nematzadeh, Mahdi;Gholampour, Aliakbar
    • Computers and Concrete
    • /
    • 제29권1호
    • /
    • pp.15-29
    • /
    • 2022
  • Concrete-filled steel tubes (CFSTs) are increasingly used as composite sections in structures owing to their excellent load bearing capacity. Therefore, predicting the mechanical behavior of CFST sections under axial compression loading is vital for design purposes. This paper presents the first study on the nonlinear analysis of heated CFSTs with high-strength concrete core containing steel fiber and waste tire rubber under axial compression loading. CFSTs had steel fibers with 0, 1, and 1.5% volume fractions and 0, 5, and 10% rubber particles as sand alternative material. They were subjected to 20, 250, 500, and 750℃ temperatures. Using flow rule and analytical analysis, a model is developed to predict the load bearing capacity of steel tube, and hoop strain-axial strain relationship, and axial stress-volumetric strain relationship of CFSTs. An elastic-plastic analysis method is applied to determine the axial and hoop stresses of the steel tube, considering elastic, yield, and strain hardening stages of steel in its stress-strain curve. The axial stress in the concrete core is determined as the difference between the total experimental axial stress and the axial stress of steel tube obtained from modeling. The results show that steel tube in CFSTs under 750℃ exhibits a higher load bearing contribution compared to those under 20, 250, and 500℃. It is also found that the ratio of load bearing capacity of steel tube at peak point to the load bearing capacity of CFST at peak load is noticeable such that this ratio is in the ranges of 0.21-0.33 and 0.31-0.38 for the CFST specimens with a steel tube thickness of 2 and 3.5 mm, respectively. In addition, after the steel tube yielding, the load bearing capacity of the tube decreases due to the reduction of its axial stiffness and the increase of hoop strain rate, which is in the range of about 20 to 40%.

Bound of aspect ratio of base-isolated buildings considering nonlinear tensile behavior of rubber bearing

  • Hino, J.;Yoshitomi, S.;Tsuji, M.;Takewaki, I.
    • Structural Engineering and Mechanics
    • /
    • 제30권3호
    • /
    • pp.351-368
    • /
    • 2008
  • The purpose of this paper is to propose a simple analysis method of axial deformation of base-isolation rubber bearings in a building subjected to earthquake loading and present its applicability to the analysis of the bound of the aspect ratio of base-isolated buildings. The base shear coefficient is introduced as a key parameter for the bound analysis. The bound of the aspect ratio of base-isolated buildings is analyzed based on the relationship of the following four quantities; (i) ultimate state of the tensile stress of rubber bearings based on a proposed simple recursive analysis for seismic loading, (ii) ultimate state of drift of the base-isolation story for seismic loading, (iii) ultimate state of the axial compressive stress of rubber bearings under dead loads, (iv) prediction of the overturning moment at the base for seismic loading. In particular, a new recursive analysis method of axial deformation of rubber bearings is presented taking into account the nonlinear tensile behavior of rubber bearings and it is shown that the relaxation of the constraint on the ultimate state of the tensile stress of rubber bearings increases the limiting aspect ratio.

적층고무베어링의 동적 특성평가 (Dynamic Property Evaluation of Lead Rubber Bearing by Shear Loading)

  • 이경진;김갑순;강태경;서용표;이종림
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.367-372
    • /
    • 2002
  • In these days, The base isolation system is often used to improve the seismic capacity of the structures instead of conventional techniques of strengthening the structural members. The purpose of this study is to evaluate dynamic properties and mechanical characteristics of the 10tonf-LRB(Lead-Rubber Bearing). Experimental studies were performed to obtain the hysteretic behavior, effective shear stiffness( $K_{eff}$), equivalent damping( $H_{eq}$ ), capacity of energy dissipation( $W_{D}$) of six 10tonf-LRB. Especially, in this study, the response of the LRB for high loading frequency(0.5Hz~3.0Hz) was estimated. The effective shear stiffness of the LRB decreases and the capacity of energy dissipation increases as the shear strain amplitude increases. But the shear behavior of the LRB is not affected sensitively by loading frequency.y.y.

  • PDF

미세구조물 금형가공을 위한 총형공구에 관한 연구 (A Study on Formed Tool to Machine Milli-structure Mold)

  • 이희관;김연술;김도형;노상흡;양균의
    • 한국기계가공학회지
    • /
    • 제2권4호
    • /
    • pp.5-10
    • /
    • 2003
  • This paper presents the formed tool to machine a milli-structure mold. The formed tool is used to machine the geometrical shape of bearing rubber seal for precision machining. The bearing rubber seal has milli-sized complex geometry. Because it is difficult to machine the unique shape exactly by the conventional tool, the formed tool is used in machining die of the bearing seal. In this paper, it is performed to investigate properties of the formed tool; tool wear, cutting force and machined surface roughness. Tool wear increases rapidly with clearance angle Increase. Thus, the dimension accuracy is affected by the clearance angle.

  • PDF

Seismic base isolation of precast wall system using high damping rubber bearing

  • Tiong, Patrick L.Y.;Adnan, Azlan;Rahman, Ahmad B.A.;Mirasa, Abdul K.
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1141-1169
    • /
    • 2014
  • This study is aimed to investigate the seismic performance of low-rise precast wall system with base isolation. Three types of High Damping Rubber Bearing (HDRB) were designed to provide effective isolation period of 2.5 s for three different kinds of structure in terms of vertical loading. The real size HDRB was manufactured and tested to obtain the characteristic stiffness as well as damping ratio. In the vertical stiffness test, it was revealed that the HDRB was not an ideal selection to be used in isolating lightweight structure. Time history analysis using 33 real earthquake records classified with respective peak ground acceleration-to-velocity (a/v) ratio was performed for the remaining two types of HDRB with relatively higher vertical loading. HDRB was observed to show significant reduction in terms of base shear and floor acceleration demand in ground excitations having a/v ratio above $0.5g/ms^{-1}$, very much lower than the current classification of $0.8g/ms^{-1}$. In addition, this study also revealed that increasing the damping ratio of base isolation system did not guarantee better seismic performance particularly in isolation of lightweight structure or when the ground excitation was having lower a/v ratio.